A. 完整的数据分析包括哪些步骤
完整的数据分析主要包括了六大步骤,它们依次为:分析设计、数据收集、数据处理、数据分析、数据展现、报告撰写等,所以也叫数据分析六步曲。
①分析设计
首先是明确数据分析目的,只有明确目的,数据分析才不会偏离方向,否则得出的数据分析结果不仅没有指导意义,亦即目的引导。
②数据收集
数据收集是按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。
③数据处理
数据处理是指对采集到的数据进行加工整理,形成适合数据分析的样式,保证数据的一致性和有效性。它是数据分析前必不可少的阶段。
④数据分析
数据分析是指用适当的分析方法及工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。
⑤数据展现
一般情况下,数据是通过表格和图形的方式来呈现的,即用图表说话。
常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、瀑布图、漏斗图、帕雷托图等。
⑥报告撰写
数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,以供决策者参考。所以数据分析报告是通过对数据全方位的科学分析来评估企业运营质量,为决策者提供科学、严谨的决策依据,以降低企业运营风险,提高企业核心竞争力。
B. 数据分析的步骤一般包括
数据分析的步骤一般包括分析设计,数据收集,数据处理等。
数据分析介绍:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推则大广。数据分析是数学与计算机科学相结合的产物。
数据也称为观测值,是实验、测量、观察、调查等的结果。数据分析中所处理的数据分为定性数据和定量数据。只能归入某一类而不能用数值进行测度的数据称为定性数据。
C. 数据分析包含哪几个步骤,主要内容是什么
数据分析主要包含五个步骤:
明确目的:明确数据分析的目的,确保数据分析有效进行并为数据的采集、处理提供方向;数据收集:在DAP产品中会通过应用系统定义模块实现对多个应用系统数据的采集工作;清洗加工:在DAP产品中会通过ODS和数仓实现对业务系统数据的层层加工过滤,得到最终需要的业务数据;数据展示:在配置好数据模型之后,可以通过绑定echarts组件的方式实现业务数据的可视化展现;报告撰写:主要用于描述对业务数据分析的过程和分析之后得到的结果。数通畅联的DAP数据分析平台主要有以下三个优点:
在多层的数据加工过滤之中,通过聚合计算和横向合并可以得到多指标信息的数据,更加拓宽了数据的业务性和可分析性磨基兄;业务数据的可视化展现让用户可以更直观地对各个业务数据进行处理和分析;在ESB等数据调锋族度工具的辅助之下,更加快速地实现了数据跟进,让用户可瞎袭以实时跟进数据状况,有助于企业做出相应的决策。D. 数据分析五大步骤
(一)问题识别
大数据分析的第一步是要清晰界定需要回答的问题。对问题的界定有两个标准,一是清晰、二是符合现实。
(二)数据可行性论证
论证现有数据是否足够丰富、准确,以致可以为问题提供答案,是大数据分析的第二步,项目是否可行取决于这步的结论。
(三)数据准备
数据准备环节需要梳理分析所需每个条目的数据,为下一步建立模型做好从充分预备。这种准备可以分为数据的采集准备和清洗整理准备两步。
(四)建立模型
大数据分析项目需要建立的模型可以分为两类。对于这两类模型,团队都需要在设立模型、论证模型的可靠性方面下功夫。
(五)评估结果
评估结果阶段是要评估上述步骤得到的结果是否足够严谨可靠,并确保数据分析结果能够有利于决策。评估结果包括定量评估和定性评估两部分。
大数据的应用
大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。
大数据的意义和前景
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
大数据发展战略
传统的数据方法,不管是传统的 OLAP技术还是数据挖掘技术,都难以应付大数据的挑战。首先是执行效率低。传统数据挖掘技术都是基于集中式的底层软件架构开发,难以并行化,因而在处理 TB级以上数据的效率低。其次是数据分析精度难以随着数据量提升而得到改进,特别是难以应对非结构化数据。
在人类全部数字化数据中,仅有非常小的一部分(约占总数据量的1%)数值型数据得到了深入分析和挖掘(如回归、分类、聚类),大型互联网企业对网页索引、社交数据等半结构化数据进行了浅层分析(如排序),占总量近60%的语音、图片、视频等非结构化数据还难以进行有效的分析
卤鹅