⑴ 大数据变现,电信运营商只需往前迈一步
大数据变现,电信运营商只需往前迈一步
经过多年的技术积累和市场培育,大数据已经从“炒作”走向落地。全球主流的电信运营商普遍认识到大数据所蕴藏的高价值,开始积极探索如何将手中掌握的大量数据资源变现。目前,电信运营商的大数据探索主要集中在如何利用大数据分析用户行为、优化网络质量和推动业务创新等方面。数据堂创始人、CEO齐红威在接受《人民邮电》报记者采访时指出,这些对于大数据的内部利用,往往需要对原有系统进行大规模改造,而且无法直接快速地带来收入的增长,其实电信运营商可以用另一种思路,在基本不改造现有系统的情况下,立竿见影地获得可观的收益。
国务院为大数据发展“定调”
齐红威具有十多年的数据挖掘研发应用经验,曾任NEC中国研究院研发部部长、高级研究员。“大数据的本质特征并不是‘规模大’”,他阐述了对于大数据的理解。
现在人们对于大数据的认识普遍存在着误区,认为当数据量达到一定量(TB级或PB级)就是大数据,其实不然,区分大数据与海量数据的标准并不取决于其数据量,从技术上讲,“非结构化”数据才是大数据最典型的特征。现实生活中80%的数据都是非结构化的,解读这些数据,蕴藏着巨大的商业价值,这才是大数据。从商业模式上讲,大数据就是移动互联网产生的大量的关于人的数据。
近日,国务院总理李克强主持召开国务院常务会议,讨论并通过了《关于促进大数据发展的行动纲要》,对消除信息孤岛、支持大数据产业发展、强化信息安全等提出了明确要求。
齐红威认为,这是一个极大的利好消息。“大数据作为全球发展的战略资源,未来将像石油一样,影响到世界格局。对于中国而言,大数据是国家战略转型升级的基础,依靠数据和互联网相结合的方式,减少中间环节,提升传统行业运作效率。以前,一些地方政府或者企业虽然都认识到大数据的价值,但对于发展大数据仍心存顾虑:能不能做?做到什么程度?‘红线’在哪里?《纲要》的推出相当于政府给大数据发展定了调——不仅要做,而且要做大做强。”
大数据变现的闭环已经形成
2014年是大数据的商用元年,许多行业开始利用大数据真正地产生价值,齐红威认为:“现在很像电商井喷式发展前的2006年、2007年,市场培育已经完成,生态圈初具规模,商业模式逐渐成熟。价值万亿的大数据市场的大门已经打开。”
齐红威将大数据生态圈划分为云计算服务商、数据提供商、数据服务商和数据应用商四部分,实现从”数据流“到”资金流“分享共赢的商业运作模式。
其中,云计算服务商主要负责提供计算、存储和带宽等基础能力。
数据服务商则提供各种数据,包括政府大数据(公安、交通等)、行业大数据(电信、金融、电力等)、互联网大数据(互联网企业的用户数据、互联网公共数据)以及线下大数据等。
“现在网络上随时都在产生海量的数据,但线下的许多资源都还没有被数据化,这些数据同样价值连城。”他透露,数据堂独家推出了一款名为“众客堂”的众包平台,普通用户可以通过该应用上传照片、录音等提供线下的数据并获得一定的酬劳,目前“众客堂”的众客数量在全球范围内已超过40万。这些线下数据已经开始产生价值,例如,自拍照帮助美颜相机优化美颜程序;大量的购物小票分析出商品的价格走势和促销信息;语音数据帮助语音交互系统提高识别准确度等。
数据应用商则利用经过初步处理的大数据开发各类应用,例如征信、个性化旅游和交通服务等。他认为,“数据应用商将‘百花齐放’,规模有望达到数万家。”
数据服务商是大数据变现闭环形成的关键,具有三大功能:第一,连接数据提供商和应用商的纽带,免去了双方一一洽谈的麻烦;第二,汇总大数据的平台,将各领域数据提供商的大数据整合、融合起来,将产生1+1大于2的价值,实现数据增值;第三,对大数据进行初步分析、过滤和分类,“数据服务商从提供商那儿收来的是‘小麦’,但应用商需要的是‘面粉’,所以服务商就要完成把‘小麦’加工成‘面粉’的工作。”
“简单地说,数据服务商就相当于‘数据银行’,接收各方的‘存款’,再将这些‘资金’包装成不同的产品后贷款给有需要的人,搭建数据共享的‘生命线’,达成商业共赢,实现大数据变现的闭环。”齐红威表示。
数据堂是国内首家也是唯一一家在新三板上市的大数据服务商,团队的主创人员都有着十多年在大数据领域的技术积累,并在大数据产业发展过程中有着先发优势,经过多年的数据源积累,已获得金融征信、交通地理、人工智能、商家货价等多领域的大数据,与国内外多家数据提供商和应用商建立了合作关系,摸索出一套适应我国国情的商业模式。
电信运营商如何从“数据银行”提现
“电信运营商坐拥着一大片未被开发的‘油田’。”齐红威认为,电信运营商拥有着海量的高价值数据,例如掌握着用户的各类地理位置信息、商业活动、搜索历史和社交网络信息等大数据,具有维度丰富、群体性强、连续性好、网络行为全覆盖和关联性强等独特优势,“关键是如何将这些大数据变现,实现数据价值。”
齐红威逐一分析并回应了目前电信运营商在发展大数据时普遍存在的几点顾虑:
一是“能不能做”的问题。现在国家已经明确表示要大力支持大数据发展,在政策方面为电信运营商发展大数据铺平了道路。
二是“投入与收益”问题。与数据服务商合作,电信运营商几乎不需要改造现有系统就可以通过大数据获利,预计产生的价值有望达到亿万元级别。
三是“竞争”问题。数据服务商只生产“面粉”不生产“面包”,不会与电信运营商形成业务竞争。
四是“数据安全”问题。数据堂独创了一种模式——不“取走”数据提供商的数据,只是将软件嵌入到数据提供商的系统中,最终只生成数据结果,经数据提供商审核后再将相关结果提供给数据应用商,这就有效地消除了可能出现的信息泄漏风险。
齐红威表示,阻碍电信运营商挖掘大数据价值的障碍已经被一一清除,他们只需“向前迈一步”,即可拥抱蕴藏着无限商机的大数据时代。
“如果说大数据的发展是一场数万米的马拉松比赛的话,那么现在才刚刚跑了1000多米。”但齐红威同时指出,大数据发展已进入高速发展期,2015年将是各方布局大数据的关键时期,未来两三年将初步奠定大数据市场的格局,大数据将迎来超过十年的上升期。
以上是小编为大家分享的关于大数据变现,电信运营商只需往前迈一步的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 运营商大数据如何获取客户
怎么做到低成本获取精准客户有办法低成本精准获客吗?这个问题反映了下面几个问题:1.SEM带来的线索成本越来越贵2.广告投放带来的的线索也是越来越贵3.贵我忍了,线索不够精准,直接导致线索的转化率低大家都知道互联网获成本越来越贵,而且价格虽然提高了,但是精准度却是没提上来,这就导致了很多企业的利润降低,甚至亏本的情况。那么如何低成本精准获客呢?要解决这个问题我们首先要明白什么是获客成本,获客成本包括获取客户投入的人力、物力、精力、时间等一切成本。如果说你既不想投入金钱,乎旁余也不想付出时间,还想着精准获客,有这好事我还能告诉你?如果说你想节约资金,这个有启历很多方法,比如可以选择做优化,成本低,效果持久,但需要时间和岁滚技术,有一定难度,而且效果不稳定。如果你时间紧迫,想快速获取流量,那你可以选择竞价或信息流,能快速获取客户,但价格大家都知道的。所以说如何低成本精准获客还是要看你自身的条件了,有的人缺钱,有的人时间宝贵。估计大部分(包括本人)都是缺钱。不花钱又不花时间的精准获客方法小编是没有的,不过小编有一个获客成本只有竞价五分之一的获客渠道——运营商大数据精准获客系统。这个新的精准获客渠道是大数据联合运营商研发的大数据智能获客系统,以运营商大数据库为中心,直接抓取符合自定义条件用户的联系方式,直接与客户进行沟通,降低企业获客成本,提高企业利润!怎么做到低成本获取精准客户_传统互联网营销:1、搜索引擎竞价模式:优点:精准、高效、可控制。缺点:竞争激烈、效果不稳定、价格很高。总结:大搜竞价模式是目前主流获客渠道之一,由于是关键词触发展现,所以精准度还是不错的,不过那么多公司做竞价,想转化还是不容易的。总的来说如果有充足的资金预算,竞价还是很有效果的!2、信息流广告:优点:主动、原生、曝光高缺点:流量质量低、转化难、价格高总结:信息流也是很流行的推广方式,往往能获得很大曝光,但是不够精准,转化难。3、SEO优化推广:优点:稳定、长效、成本低缺点:见效慢、流量少总结:seo优化是通过优化网站提高排名和展现,吸引更多的流量和曝光。这个方法很长效,成本不高,但是优化周期也很漫长,流量不高。
⑶ 2020年运营商大数据市场价值大不大 有何价值
【导读】在大数据行业发展过程中,运营商扮演者极其重要的角色,是大数据发展过程中非常重要的一环,今年来,运营商大数据已经应用到了很多行业和领域,那么2020年运营商大数据市场价值大不大?有何价值呢?下面我们就来具体了解一下吧。
1、运营商大数据的市场应用
运营商大数据建模分析技术,运营商掌握着全国近15亿用户,用户15亿用户数据资料进行实时监控,分行业建立用户画像具体分析,给各企业各行业各领域带来了更先进的获客,推广与客户关系管理平台。
(1)房产行业获客应用
借助强大的运营商大数据建模分析,和运营商用户数据存储分析能力,通过用户画像和完善的行业标签帮助房产行业去挖掘和分析其潜在的有意向购房的客户群体。依据对房产类网站,app,400电话,固话,小程序,关键词等实时用户数据进行实时数据监控和数据管理,紧密配合CRM平台对精准客户资源进行获客推广服务和管理,实现精准用户数据上的合理应用和转化成交。
(2)教育行业获客应用
借助运营商大数据建模挖掘分析和精准的算法对教育类网站,app,400电话,固话,小程序,关键词实时访问,活跃,来电者,搜索者用户数据做用户画像,和行业分析处理,对有意向想接受教育者进行和教育资源分析,从而合理的与相关合作的教育机构进行匹配和部署。
(3)金融行业获客应用
根据用户画像分析:依据金融行业网站,APP,400电话,固话等、从运营商用户上网行为数据、通信行为数据等,去帮助相关金融机构,金融行业企业更加充分的了解自身潜在的客户群体,从而减低业务难度,提高获客转化成交;
2、运营商大数据的应用价值
运营商大数据对我们的企业和不同的行业,领域,以及目前市场的营销推广,获客都产生了重要的影响。从传统营销转为数字营销,数据营销,在大数据时代,我们更应该选择那些正规的规范的运营商大数据获客产品,在避免法律风险的同时还可以让其能够发挥极高的市场价值,带动政企又好又快的发展。
相信大家对于2020年运营商大数据市场价值大不大,已经有了自己的答案,如果已经确定了要在此行业获得长足的发展,那就加油吧,你一定会成功的!
⑷ 运营商大数据获客电销数据平台代理靠谱吗
盘云(山东)大数据服务有限公司
这些年,大数据已经提升到了国家级别战略的高度,从2014年大数据正式写入工作报告,到在五中全会的“十三五”规划建设中明确提出,要建设和实施我国的大数据战略,大数据产业的相关政策措施密集出台,涉及到产业转型、治理、科技攻关、产业扶持和安全保障等多个方面。
其中,数拍运营商大数据产业的发展获得各级的大力支持,州茄产业环境持续优化,产业规模快速发展。我国信通院发布的《大数据白皮书》显示,2017年,我国大数据产业规模达4700亿元,同比增长30.6%,预计到2020年产业规模将突破8000亿元。如此巨大的市场,市场内新进的玩家情况又是如何的呢?盘云山东大数据服务有限公司的资深研究员就来为您讲解一下,联通运营商大数据优势到底在哪?
联通发力大数据优势何在?册毕察
首先,电信运营商在大数据产业具有天然优势。
电信运营商依靠自身拥有的庞大客户群,且可以获取用户高频次、高互动性的实时动态轨迹的通话和上网数据。这么看来运营商能够获取到的数据,拥有互联网公司所没能有的量级和详细程度。虽然互联网巨头本身也有大数据资源,但他们的大数据的来源是自身运营的app或者网站采集,而且采集用户使用他们业务时产生的数据更多的是为自己服务。而运营商的数据来自于各个领域,同时运营商的大数据应用不仅限于自身,更多的是应用于各个行业,进行行业深度融合,为行业赋能。
其次,联通大数据公司相较于其他电信运营商在大数据产业具有领先优势。
联通在运营商中率先进行混合所有制改革,加大了创新战略的落地,为联通大数据的能力注入了更强的活力因子。同时联通一直高度重视大数据业务的发展。在三家电信运营商中,联通率先进行了31省的数据集中,一个成立了专业化的大数据公司。经过几年的发展,联通在大数据产业已经积累了深厚经验,构建了标准化的产品和大数据的解决方案,组建了经验丰富、技术领先的队伍。
最后,联通大数据业务是合法合规的业务。
传统渠道购买到的明文电话数据,目前国家已经命令禁止,定义其行为是非法买卖个人信息。但是全国那么多家公司需要开展业务,电话营销又是目前最简单有效的拓客方式,需求那么旺盛又不能一下子没有。运营商大数据这个时候就解决了临时出现的行业空白。通过包括号码加密等一系列手段保护客户隐私,并在政府方面备案,成为了企业需要精准营销时唯一合法合规的数据渠道。
⑸ 运营商大数据精准获客,真正可靠的平台是哪个
在我国大数据有着很高的利用率,从国家战略,到互联网企业创建自身应用的大数据体系,说明我国一直在建设和大力发展大数据战略,大数据应用方式也逐渐丰富和多样化,运营商大数据就是其中一个典型的例子。
运营商凭借着海量的用户群体,和用户高频率的使用其上网业务,通信业务,增值业务、并且拥有用户和网站,网页,APP应用,电话等平台的高互动性,和实时性。运营商大数据还拥有强大的云计算大数据建模能力,比如用户在上网浏览网页的同时,该用户的动态上网行为就会实时的产生。运营商大数据可以通过建模分析出实时的:比如用户浏览了哪些网页,哪些内容,访问期间使用了多少流量,访问了几次,消耗了多少时间等。或者用户下载了哪些APP,频繁活跃的使用哪些APP应用,注册了哪些APP应用,浏览APP应用的时间长短,期间消耗了多少流量,一天内使用了多少次等等。同样可以分析出用户的语音通话行为和短信收发行为等。
运营商大数据,有着互联网公司所不能企及的用户数据和实时性,精准性。运营商大数据的应用,并不像互联网公司那样,只能应用在自身的业务,而是可以帮助各行业,企业进行获客,营销等扩展应用,可以帮助不同的行业领域,根据他们的获客需求去建模,获取精准的客户数据。
运营商大数据可以根据不同行业,企业对于自身所需要的精准客户需求的不同,进而针对性的建模,相关行业,企业可以搜集自身领域的获客线索(如同行网站URL,垂直领域APP应用,竞品的400/固话等)根据获客线索针对性的去建模,抓取网站实时访客,APP的活跃/注册用户,400/固话的主叫被叫等,还可以根据性别的不同,年龄段,地域的不同,网站访问次数,时长的不同,通话的时长,次数的不同,针对性的去筛选目标客户群体,直到找到符合相关行业,企业的实时精准客户数据。
运营商大数据有:移动大数据,联通大数据,电信大数据。
1. 移动大数据精准外呼 :全行业移动大数据精准外呼,精准触达(通过建模抓取相关行业,企业的获客线索,获取符合该行业,企业的精准客户,数据脱敏,CRM系统外呼)
2. 联通大数据精准外呼 :全行业联通大数据精准外呼,精准触达(通过建模抓取相关行业,企业的获客线索,获取符合该行业,企业的精准客户,数据脱敏,CRM系统外呼)
3. 联通大数据动态标签 :全行业联通大数据动态标签,匹配精准客户(通过标签去匹配联通数据库)
4. 房产, 汽车 行业精准大数据 :可以根据全国,省市,县区,楼盘,具体 汽车 品牌,车型,价位,档次等标签去命中实时需要购买和了解的意向客户群体。
⑹ 运营商大数据对外价值变现的十大趋势
作者 | 傅一平
来源 | 与数据同行
最近中国移动提出了DICT战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有点风声鹤唳,但对于合法合规的进行大数据业务的企业来讲没有什么影响。
下面笔者就结合自身实践,给出未来2-3年运营商大数据价值变现的十个趋势判断,仅代表个人看法,希望于你有所启示。
1、行业服务边界不断拓展
依托于运营商潜力巨大的数据资源和政企市场渠道资源,经过多年的市场培育和拓展,当前运营商大数据业务从原来的金融、旅游等行业逐步拓展到政府、旅游、交通、教育、商业、招聘、医疗等各个各业。
运营商ICT业务在推进中,也孕育了不少大数据业务的商机,大数据业务则反过来促进了ICT业务的发展,因为大数据除了业务价值,还有一定的社会品牌效应,两者通过融合可以形成合力。
随着企业数字化转型的加快及产业互联网的崛起,作为未来社会基础设施的大数据,将与云计算、人工智能、物联网、区块链一起,在行业领域开疆扩土,其应用的边界几乎是无限的。
2、进入行业应用的深水区
大数据在行业领域拥有着巨大的潜力并不意味着运营商就能分得多少杯羹。虽然运营商大数据业务当前在金融、旅游等行业已经有所斩获,但这些行业低垂的果实基本要被摘光了。
以金融为例,4-5年前运营商切入的验真,失联触达等业务,当前仍然是运营商大数据变现的主力,但金融行业并未如运营商原先预料的那样,在贷前、贷中、贷后中给予运营商更多的机会,运营商很多变现业务模式的拓展基本是停滞的,起码不够快。
在大量的其他行业领域,运营商往往只能做到蜻蜓点水,而无法聚沙成塔,比如业务的复购率很低。
从定性的角度讲,运营商对于行业的理解还是比较浅的,其大量的行业应用游走在企业的核心生产流程之外,大数据似乎是奢侈品,而不是必需品,因此粘性是不够的。
以金融验真这个业务为例,其附加值并不高,且容易被替代,想想这几年对于金融行业的理解又增加了多少呢?这些都是需要反思的地方。
笔者曾经在智慧交通相关文章中提到:运营商的数据在很多领域其实是很有前途的,但必须深耕,要理解这个行业的业务,通晓这个行业的算法,不停的打磨产品,从而逼近核心。
可以这么说,运营商大数据将很快进入行业应用的深水区,为了顺应这个趋势,运营商需要建立专业化的组织去攻坚克难,挑战很大。
3、与互联网公司的竞争加剧
互联网应该没有把运营商当成主要的大数据竞争对手,但运营商进入这个领域会跟互联网公司形成事实上的竞争,无论是新零售,智慧交通等等,进入者都会感受到互联网巨头的压力。
比如运营商要为大型商超提供数据服务,但互联网公司早就捷足先登,新零售是互联网出的概念,当运营商还在进行自身渠道的艰难转型时,互联网公司线下商业的版图已经规划好了,当然也包括了大数据业务。你到商超谈,人家一开口就提XX通怎么样怎么样。
当然还不仅仅是这些。
无论是互联网公司在To G上自顶向下的推广策略,还有诸如城市大脑单一采购来源的霸气,都在说明巨型互联网公司在这些领域的影响力。
运营商要获得机会,得动用一切可用的资源,发挥自己数据的差异化价值,由点及面去寻找机会。实践证明,管道数据的价值是巨大的,但巨型互联网公司的数据也越来越好,这是不得不面对的现实。
4、从要素驱动向要素+能力驱动转型
运营商当前在大数据变现上的突破只能说摘取了低垂的果实,但这种通过简单数据加工形成的数据产品竞争力是不够的,也是不可持续的。
比如做智慧交通,如果位置精度和覆盖度不够,连速度都测不准,根本做不出高质量的数据产品。
应该来讲,运营商从来就没有现成的、高精度的、可以到用户级别的位置数据,粗精度的原始位置数据未来可能连支撑运营商自己的业务转型都不够,运营商需要充分挖掘现有位置数据的潜力,通过建模等方式把较为精准的位置模型做出来,才能有基本的大数据变现底蕴。
位置精度的提升虽然是一小步,但却是对外大数据变现的一大步。位置准了,运营商对于人们整个线下生活的理解就准了,无论是客流,路网,OD等等都不再话下。
现在运营商依靠数据资源这个要素能走出第一步是不错的,但光靠资源驱动已经不够了,能力必须过来接棒,没有能力加持的运营商大数据变现前景暗淡。
因此,运营商大数据变现未来不再是躺着挣钱,而是要从原始数据的驱动向数据+能力双驱动转型,这个能力包括人才、技术、数据、产品、运营等等,这是不容置疑的。但如果只是空喊着口号不敢探索尝试,则也许连能力提升的机会都没有。
5、持续强化大数据合作的生态
大数据变现从底向上涉及平台、数据、建模、产品、方案、渠道、咨询、运营、安全等一系列的内容,运营商无法一手包办,因此必须建立合作的生态。
从业务的角度看,缺乏渠道合作伙伴、缺乏行业解决方案对于运营商都是很现实的挑战,最大的痛苦莫过于不知道商机在哪里,不知道自己想做的这个数据或产品有没有前途。运营商不可能瞬间将现有的客户经理队伍转为数字化产品的销售队伍,毕竟知识结构的要求不一样。
虽然可以采取MVP的方式推进,但一方面试错的成本摆在那里,运营商也并没有资本为其背书,另一方面时间成本也大了点。现在很多运营商都有合作伙伴招募计划,这是很好的尝试,但符合要求的合作伙伴还是太少了。
从开放的角度看,中国移动的梦网曾经创造过辉煌,但开放这句口号不是随便喊喊的,你得建立一套标准,清晰的告诉别人你有什么能力,然后如何能方便的接入。
比如当我们在互联网大会展示城市实验室产品的时候,发现仍然有那么多的人惊讶于运营商竟然还能做这个,就说明我们在开放这条道上还有很长的路要走。
而当笔者第一次访问阿里云网站的时候,其较好的使用体验给我留下了深刻的印象,随后定期的营销推送起码说明是用心的,又比如笔者第一次使用腾讯云域名申请时,其后腾讯云客服的电话调研也是很及时的。
因此,能否跟更广泛的合作伙伴建立连接,能否建立起开放的平台,能否确保信息的安全,在很大程度上决定了运营商大数据变现的蛋糕能做多大。
6、通过集中化获得溢价能力的趋势将加强
由于历史原因运营商的大数据实际是分省存储和运营的,这跟互联网公司天然的集中统一的数据基因是完全不同的。虽然一些运营商在集中化上做了很多努力,但相对互联网公司,还是有一些差距。
各省本地化做一些产品虽然带来了灵活性,但造成了事实上的重复开发,这种模式在创新阶段其实没什么问题,但最大的问题是各个省能否有足够的资源去保证产品的持续优化,无论从数据的角度,还是从运营的角度看,我们都需要一定的集约化机制来确保高效低成本的运作。
但这还仅仅是一个方面。
另一方面,相较互联网,由于数据的割裂,运营商基于单个省的数据做出的产品溢价能力不高,往往只能服务于特定区域,在很多竞争中会处于劣势,比如当前运营商基于位置数据的应用很多,但为什么上网数据的变现却很少呢?
这个不仅仅是简单的https问题,更是因为客户对于上网数据的诉求基本是全国的,没有地域的概念,这让运营商失去了很多突破的机会。
因此,运营商的大数据在一个省创新后迅速全网复制是一直要坚持的策略,而基于集中化的数据进行创新是提升产品竞争力的一个关键。
7、运营商DICT战略将使得大数据获得更大支持
随着数字经济的发展和行业数字化的进步,传统产业转型升级的需求强劲,运营商和云服务提供商,均在强化云、网、端、边协同,推出“云+网+DICT”智能化解决方案,帮助企业实现更深层次的数字化转型。
运营商的政企2B市场是当前关注的焦点,而云+DICT(DT+CT+ICT+IDC)又是其中的关键,这意味着未来各种资源会逐步会向DICT倾斜,大数据需要抓住这个机会,通过DICT的融合来促进大数据业务的规模化发展,所谓“借势”。
另外,当前三大运营商已经宣布了5G商用,中国移动也发布了了“5G+”计划,其中包括“5G+AICDE”计划,“5G+AICDE”是将5G作为接入方式,与人工智能(AI)、物联网(IoT)、云计算(Cloud Computing)、大数据(Big Data)、边缘计算(Edge Computing)等新兴信息技术深度融合,准备打造以5G为中心的泛智能基础设施。
5G时代人和物、物和物之间的连接产生的数据类型将会更多,5G更密集的基站布点意味着更高的定位精度,5G业务形式更加多样意味着管道中的数据内容会爆发性增加,运营商对于客户行为的刻画能力将进一步加强,每项垂直5G行业应用都将会与大数据有着千丝万缕的关系,这些对于运营大数据的发展是利好。
8、日益趋紧的数据安全要求对于运营商既是挑战也是机遇
运营商虽然拥有海量的数据,但很多省公司并未实质性的开展大数据业务,很多是基于安全的考量。即使是正在开展大数据变现业务的运营商省份,合规合法经营也是其开展大数据业务的底线,运营商对于大数据的业务创新是相对保守的。
事实上,运营商当前能开展的各项大数据新业务,都需要经过内部极其严格的法律、安全多道审核,加上行业、集团、省出台的各种安全管理规范的约束,还有定期的安全检查,都让运营商大数据业务从一出生就经历着内部一轮轮的安全洗礼。
2019年持续发酵的各种信息安全事件让大数据圈似乎如履薄冰,但其打击的还是各种违法经营和黑市交易。事实上,经过新一轮的洗盘,运营商也许会面临较以往更好的商业环境,数据可能会变得更为稀缺,毕竟以前黑市的数据交易会导致良币驱逐劣币的现象,当然这也只是一种猜测。
可以肯定的是,未来国家对于信息安全管控的趋紧会使得大数据业务的创新变得更具挑战性,但合规合法的进行大数据价值挖掘,助力中国经济高质量发展始终是主流,运营商虽然会面临安全上的挑战,但也有更多的机会。
9、运营商大数据对于TO C业务的探索不会停止
互联网公司TO C业务前期是靠钱烧出来的,毕竟消费者是趋利的,拥有高体验的产品和一定基础的用户后,互联网公司才有了珍贵的海量数据,这个时候大数据才有用武之地,反过来赋能业务发展,这是互联网公司应用大数据的本质。
运营商天然就有大数据,但大数据变现的实践还是告诉我们,运营商的数据维度还是不够丰富,比如缺乏消费数据,而巨型的互联网公司通过应用的丰富不断积累着更多维度的数据。
事实上,当前运营商的数据维度拓展基本是停滞不前的,如果不加以改善,在不久的将来,运营商的数据优势会逐步变小,最终会影响到产品的竞争力。
现在运营商建立了很多专业公司,比如中国移动的咪咕,有人会质疑这些公司能否赚钱,姑且不从战略的角度思考这个问题,即使站在大数据的角度看,这些公司的拓展能够让运营商拥有更丰富的数据,这就很有价值。最近中移金科成立了,支付数据对于DT有多重要不用解释吧,因此意义是很深远的。
其实做大数据产品的,哪个没有点TO C的梦想?希望运营商能基于自己的资源优势,结合大数据的差异化特点,能够打造出真正的既卖座又叫好的TO C产品。
10、运营商对于低价值密度的大数据处理能力要求会大幅提升
运营商的DPI数据具有典型的大数据特征,有潜力但价值密度低,但这个数据是运营商除位置数据以外最珍贵的数据,很多人说这个数据在运营商变现中实际没啥应用场景,或者言必称https,那是比较业余的说法。
随着5G时代的到来,对于DPI数据的有效开采挖掘对于运营商大数据变现是核心的基础工作之一。
首先,DPI这个技术原生是为网络优化服务的,比如很多字段对于数据变现没有价值,能否考虑更高性价比的处理手段?这个就需要运营商针对性的进行研究,比如从客户洞察、精准营销和价值变现的角度去高效低成本的采集管道中的数据。
其次,5G海量、低延时、非结构数据的特点,将进一步促进数据存储、处理和分析技术的进步,即使是当前的4G,从采集到应用的时延也是比较高的,很难达到场景式营销的要求,而且保留的周期也非常有限。
最后,5G大数据的价值密度将进一 步降低,对AI的能力要求将更高,即使是针对当前的4G数据,运营商的NLP等能力储备也是不够的,因此要尽快补足短板。
当然,以上十个趋势只是笔者的个人判断,受限于自己的能力和视野,以上谈的肯定有很多不到位的地方,权当笔者抛砖引玉,如果能引发一点思考,那就更好了。