导航:首页 > 数据分析 > 统计学数据整理要考虑哪些问题

统计学数据整理要考虑哪些问题

发布时间:2023-12-11 09:13:02

Ⅰ 统计数据整理的内容一般有

统计整理的内容通常包括: (1) 根据研究任务的要求,选择应整理的指标,并根据分析的需要确定具体的分组; (2) 对统计资料进行汇总、计算; (3)通过统计表 描述汇总的结果。

内容和步骤

统计整理的内容通常包括:

(1) 根据研究任务的要求,选择应整理的指标,并根据分析的需要确定具体的分组;

(2) 对统计资料进行汇总、计算;

(3)通过统计表描述汇总的结果。在统计整理中,抓住最基本的、最能说明问题本质特征的统计分组和统计指标对统计资料进行加工整理,这是进行统计整理必须遵循的原则。

统计整理的步骤由内容来决定,大体分为以下几个步骤:

设计整理方案

整理方案与调查方案应紧密衔接。整理方案中的指标体系与调查项目要一致,或者是其中的一部分,绝不能矛盾、脱节或超越调查项目的范围。整理方案是否科学,对于统计整理乃至统计分析的质量都是至关重要的。

对调查资料进行审核、订正

在汇总前 ,要对调查得来的原始资料进行审核 ,审核它们是否准确、及时、完整,发现问题,加以纠正。统计资料的审核也包括对整理后次级资料的审核。

进行科学的统计分组

用一定的组织形式和方法,对原始资料进行科学的分组,是统计整理的前提和基础。

统计汇总

对分组后的资料,进行汇总和必要的计算,就使得反映总体单位特征的资料转化为反映总体数量特征的资料。

编制统计表

统计表是统计资料整理的结果,也是表达统计资料的重要形式之一。根据研究的目的可编制各种统计表。

Ⅱ 分析数据时需要注意哪些问题

1、没有明确分析数据的目的


当我们要分析一份数据时,首先要确定好自己的目的,为什么要收集和分析这样一份数据,而只有明确了目的之后,这样才能够了解自己接下来要收集哪些数据,应该怎么收集数据,应该分析哪些数据等。


2、没有合理安排时间


数据分析也要合理安排时间,一般我们有几个步骤,收集数据>>整理数据>>分析数据>>美化表格,在做这些之前,我们要预估一下每一个步骤需要花多少时间,哪一步比较重要,需要花更多的时间等,这些都要在开始收集数据前就计划好,然后在操作的过程中在规定的时间里完成每一个步骤。


3、重收集轻分析


培训里有不少同学就犯了这样的一个错误,做任务的时间为3个星期,却用了两个多星期来收集数据,最后基本没有时间去分析,紧赶慢赶最后交上来一份没有怎么分析的数据。数据分析重点应该在于分析,应该以最快的速度收集完数据,才有更多的时间整理和分析,最后经过分析的数据才是最有价值的。


4、收集数据太多,导致无法整理及分析


在我们开始收集数据的时候,容易犯的一个毛病就是看到什么内容比较符合的就都收集下来,这样的情况是数据越来越多,表格里文档里的内容越来越多,到最后一看,自己都晕了,该怎么整理和分析啊!其实我们在收集数据的时候也要有一个标准,什么样的数据是我们需要的,什么数据是不符合条件的,作一个初步的判断,这样就可以减少后面整理的更多工作量了。


关于分析数据时需要注意哪几点,青藤小编今天就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。


以上是小编为大家分享的关于分析数据时需要注意哪些问题?的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅲ 数据分析中要注意的统计学问题

一、均值的计算

在处理数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,往往我们会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。

这是因为作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等多个。至于该采用哪种均值,不能根据主观意愿随意确定,而要根据随机变量的分布特征确定。

反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其数学期望就是其算术平均值。此时,可用算术平均值描述随机变量的大小特征;如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则几何平均值就是数学期望的值。此时,就可以计算变量的几何平均值;如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。此时,可用中位数来描述变量的大小特征。

因此,我们不能在处理数据的时候一律采用算术平均值,而是要视数据的分布情况而定。

二、直线相关与回归分析

这两种分析,说明的问题是不同的,既相互又联系。在做实际分析的时候,应先做变量的散点图,确认由线性趋势后再进行统计分析。一般先做相关分析,只有在相关分析有统计学意义的前提下,求回归方程才有实际意义。一般来讲,有这么两个问题值得注意:

一定要把回归和相关的概念搞清楚,要做回归分析时,不需要报告相关系数;做相关分析的时候,不需要计算回归方程。

相关分析中,只有对相关系数进行统计检验(如t检验),P<0.05时,才能一依据r值的大小来说明两个变量的相关程度。必须注意的是,不能将相关系数的假设检验误认为是相关程度的大小。举个例子:当样本数量很小,即使r值较大(如3对数据,r=0.9),也可能得出P>0.05这种无统计学意义的结论;而当样本量很大,如500,即使r=0.1,也会有P<0.05的结果,但这种相关却不具有实际意义。因此,要表明相关性,除了要写出r值外,还应该注明假设检验的P值。

三、相关分析和回归分析之间的区别

相关分析和回归分析是极为常用的2种数理统计方法,在环境科学及其它研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,因此在应用中我们很容易将二者混淆。

最常见的错误是,用回归分析的结果解释相关性问题。例如,将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。

相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种方法存在本质的差别。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

实际上在相关分析中,两个变量必须都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析。而回归分析中,因变量肯定为随机变量,而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

很显然,当自变量为普通变量的时候,这个时候你根本不可能回答相关性的问题;当两个变量均为随机变量的时候,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此这又回到了问题二中所讲的,如果你要以预测为目的,就不要提相关系数;当你以探索两者的“共变趋势”为目的,就不要提回归方程。

回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此我们不能错误地理解R2的含义,认为R2就是 “相关系数”或“相关系数的平方”。这是因为,对于自变量是普通变量的时候,2个变量之间的“相关性”概念根本不存在,又谈什么“相关系数”呢?

四、相关分析中的问题

相关分析中,我们很容易犯这么一个错误,那就是不考虑两个随机变量的分布,直接采用Pearson 积矩相关系数描述这2个随机变量间的相关关系(此时描述的'是线性相关关系)。

关于相关系数,除有Pearson 积矩相关系数外,还有Spearman秩相关系数和Kendall秩相关系数等。其中,Pearson积矩相关系数可用于描述2个随机变量的线性相关程度,Spearman或Kendall秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势。

因此我们必须注意的是,Pearson 积矩相关系数的选择是由前提的,那就是2个随机变量均服从正态分布假设。如果数据不服从正态分布,则不能计算Pearson 积矩相关系数,这个时候,我们就因该选择Spearman或Kendall秩相关系数。

五、t检验

用于比较均值的t检验可以分成三类:第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组检验,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布。

t检验是目前在科学研究中使用频率最高的一种假设检验方法。t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于我们对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

常见错误:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

正确做法:当两样本均值比较时,如不满足正态分布和方差齐性,应采用非参检验方法(如秩检验);两组以上的均值比较,不能采用t检验进行均值之间的两两比较。

因此我们必须注意,在使用t检验的时候,一定要注意其前提以及研究目的,否则,会得出错误的结论。

六、常用统计分析软件

国际上已开发出的专门用于统计分析的商业软件很多,比较著名有SPSS(Statistical Package for SocialSciences)、SAS(Statistical AnalysisSystem)、BMDP和STATISTICA等。其中,SPSS是专门为社会科学领域的研究者设计的(但是,此软件在自然科学领域也得到广泛应用);BMDP是专门为生物学和医学领域研究者编制的统计软件。

当然,excel也能用于统计分析。单击“工具”菜单中的“数据分析”命令可以浏览已有的分析工具。如果在“工具”菜单上没有“数据分析”命令,应在“工具”菜单上运行“加载宏”命令,在“加载宏”对话框中选择“分析工具库”。

特别推荐一款国产软件——DPS,其界面见附图。其功能较为强大,除了拥有统计分析功能,如参数分析,非参分析等以外,还专门针对一些专业编写了专业统计分析模块,随机前沿面模型、数据包络分析(DEA)、顾客满意指数模型(结构方程模型)、数学生态、生物测定、地理统计、遗传育种、生存分析、水文频率分析、量表分析、质量控制图、ROC曲线分析等内容。有些不是统计分析的功能,如模糊数学方法、灰色系统方法、各种类型的线性规划、非线性规划、层次分析法、BP神经网络、径向基函数(RBF)等,在DPS里面也可以找到。

阅读全文

与统计学数据整理要考虑哪些问题相关的资料

热点内容
网络维护系统都有哪些 浏览:938
刻绘大师文件格式 浏览:894
app下载是什么软件 浏览:899
编程员面试注意什么 浏览:20
公司备案证号看哪个文件 浏览:622
数据库及表的创建的操作步骤 浏览:87
如何进华为交换机编程 浏览:260
litepal外部数据库 浏览:261
迅雷用描述文件安装失败 浏览:789
app消费账单真的会寄吗 浏览:580
超链接文件名 浏览:770
安利盒子升级 浏览:848
编程stray错误什么意思 浏览:839
江右网络公司有哪些 浏览:314
微信怎么老是要登录 浏览:289
命令行隐藏文件夹 浏览:25
说谎其他版本 浏览:629
如何修改iphone的游戏存档 浏览:839
道客巴巴在哪个文件夹 浏览:918
弹个车app哪里下载 浏览:220

友情链接