『壹』 kafka获取数据的几种方式
一、基于Receiver的方式
这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spark Streaming启动的job会去处理那些数据。
然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。
如何进行Kafka数据源连接
1、在maven添加依赖
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1.4.1</version></dependency>
2、scala代码
val kafkaStream = {val sparkStreamingConsumerGroup = "spark-streaming-consumer-group"val kafkaParams = Map("zookeeper.connect" -> "zookeeper1:2181","group.id" -> "spark-streaming-test","zookeeper.connection.timeout.ms" -> "1000")val inputTopic = "input-topic"val numPartitionsOfInputTopic = 5val streams = (1 to numPartitionsOfInputTopic) map { _ =>KafkaUtils.createStream(ssc, kafkaParams, Map(inputTopic -> 1), StorageLevel.MEMORY_ONLY_SER).map(_._2)}val unifiedStream = ssc.union(streams)val sparkProcessingParallelism = 1 // You'd probably pick a higher value than 1 in proction.unifiedStream.repartition(sparkProcessingParallelism)}
需要注意的要点
1、Kafka中的topic的partition,与Spark中的RDD的partition是没有关系的。所以,在KafkaUtils.createStream()中,提高partition的数量,只会增加一个Receiver中,读取partition的线程的数量。不会增加Spark处理数据的并行度。
2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。
3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER。
二、基于Direct的方式
这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。
这种方式有如下优点:
1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。
2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。
3、一次且仅一次的事务机制:
基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。
scala连接代码
val topics = Set("teststreaming")val brokers = "bdc46.hexun.com:9092,bdc53.hexun.com:9092,bdc54.hexun.com:9092" val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder")// Create a direct stream val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)val events = kafkaStream.flatMap(line => {Some(line.toString())})
三、总结:两种方式在生产中都有广泛的应用,新api的Direct应该是以后的首选方式。
『贰』 Kafaka入门(1)- Kafka简介和安装与启动(mac)
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。kafka 是一个高性能的消息队列,也是一个分布式流处理平台。
kafka中文网
kafka官网
Procer :Procer即生产者,消息的产生者,是消息的入口。
kafka cluster :
Broker :Broker是kafka实例,每个服务器上有一个或多个kafka的实例,姑且认为每个broker对应一台服务器。一个集群由多个broker组成,集群内的broker都有一个不重复的编号,如图中的broker-0、broker-1等……
Topic :消息的主题,可以理解为消息的分类,kafka的数据就保存在topic。在每个broker上都可以创建多个topic。
Partition :Topic的分区,每个topic可以有多个分区,分区的作用是做负载,提高kafka的吞吐量。 同一个topic在不同的分区的数据是不重复的 ,partition的表现形式就是一个一个的文件夹!
Replication : 每一个分区都有多个副本 ,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader绝对是在不同的机器,同一机器对同一个分区也只可能存放一个副本(包括自己)。
Message :每一条发送的消息主体。
Consumer :消费者,即消息的消费方,是消息的出口。
Consumer Group :将多个消费组成一个消费者组。在kafka的设计中 同一个分区的数据只能被同一消费者组中的某一个消费者消费 。Partition 的分配问题,即确定哪个 Partition 由哪个 Consumer 来消费。Kafka 有两种分配策略,一个是 RoundRobin,一个是 Range,默认为Range。
一个消费者组内也可以订阅多个topic
多个消费组可以订阅同一个topic 。
Zookeeper :kafka集群依赖zookeeper来保存集群的的元信息,来保证系统的可用性。
使用brew进行安装,非常方便。
ZooKeeper是一个分布式的,开放源码的 分布式应用程序协调服务 ,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
kafka是基于zookeeper的,启动kafka之前,需要先启动zookeeper
查看启动是否成功
启动kafka
查看启动是否成功
查看topic列表
新起一个终端,作为生产者,用于发送消息,每一行算一条消息,将消息发送到kafka服务器
新起一个终端作为消费者,接收消息
服务关闭的顺序是先kafka,然后zookeeper
再过半小时,你就能明白kafka的工作原理了
Kafka架构原理,也就这么回事!