导航:首页 > 数据分析 > 数据挖掘领域是什么

数据挖掘领域是什么

发布时间:2023-11-16 18:08:12

Ⅰ 什么是数据挖掘,简述其作用和应用。

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统和模式识别等诸多方法来实现上述目标。

人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据,正是在这样的条件下,数据挖掘技术应运而生。

数据挖掘有很多合法的用途,例如可以在患者群的数据库中查出某药物和其副作用的关系。这种关系可能在1000人中也不会出现一例,但药物学相关的项目就可以运用此方法减少对药物有不良反应的病人数量,还有可能挽救生命。

(1)数据挖掘领域是什么扩展阅读

目前数据挖掘的算法主要包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。

根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及internet等。

数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步。

Ⅱ 什么是数据挖掘

数据挖掘又译为资料探勘、数据采矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

是一个用数据发现问题、解决问题的学科。

通常通过对数据的探索、处理、分析或建模实现。

Ⅲ 请问什么是数据挖掘数据挖掘怎么样

数据挖掘就是对观测到的数据集(经常是很庞大的)进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其有价值的新颖方式来总结数据。
运用基于计算机的方法,包括新技术,从而在数据中获得有用知识的整个过程,就叫做数据挖掘。

数据挖掘怎么样,严格地说,数据挖掘并不是一个全新的领域,它颇有点“新瓶装旧酒”的意味。组成数据挖掘的三大支柱包括统计学、机器学习和数据库等领域内的研究成果,其它还包含了可视化、信息科学等内容。数据挖掘纳入了统计学中的回归分析、判别分析、聚类分析以及置信区间等技术,机器学习中的决策树、神经网络等技术,数据库中的关联分析、序列分析等技术。

想要学习了解更多数据挖掘的信息,推荐CDA数据分析师课程。“CDA 数据分析师认证”是一套科学化,专业化,国际化的人才考核标准,共分为 CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ三个等级,涉及行业包括互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。该标准符合当今全球数据科学技术潮流,可以为各行业企业和机构提供数据人才参照标准。点击预约免费试听课。

Ⅳ 数据挖掘的应用领域有哪些

数据挖掘的应用领域非常广泛,目前来说在零售业、制造业、财务金融保险、通讯及医疗服务、电信、零售、农业、电力、生物、天体、化工等方面,未来将会应用在更多的领域之中。

近年来,数据挖掘引起了信息产业界的极大关注,一般只要该产业有分析价值需求的数据库,就可以利用数据挖掘工具进行有目的的对比分析,再将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括市场分析、生产控制、医疗服务、工程设计和科学探索等。比如某商场从顾客购买商品中发现一定的关联规则,可以提供打折、购物券等促销手段,提高销售额;某医院内部医疗器具的管理、病人档案资料整理等工作,引进数据挖掘技术,能够深入分析疾病之间的联系及规律,帮助医生诊断和治疗,以达到诊断事半功倍的目标,且为保障人类健康等提供强大的技术支持。诸如此类的应用,还有很多。

了解数据挖掘的应用领域,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。

Ⅳ 数据挖掘技术涉及哪些技术领域

数据挖掘的技术有很多种,按照不同的分类有不同的分类法,大致有十三种常用的数据挖掘的技术。

1、统计技术
2、关联规则
3、基于历史的MBR(Memory-based Reasoning)分析
4、遗传算法GA(Genetic Algorithms)
5、聚集检测
6、连接分析
7、决策树
8、神经网络
9、粗糙集
10、模糊集
11、回归分析
12、差别分析
13、概念描述
由于人们急切需要将存在于数据库和其他信息库中的数据转化为有用的知识,因而数据挖掘被认为是一门新兴的、非常重要的、具有广阔应用前景和富有挑战性的研究领域,并应起了众多学科(如数据库、人工智能、统计学、数据仓库、在线分析处理、专家系统、数据可视化、机器学习、信息检索、神经网络、模式识别、高性能计算机等)研究者的广泛注意。随着数据挖掘的进一步发展,它必然会带给用户更大的利益。

如果对数据挖掘的学习有疑问的话,推荐CDA数据分析师的课程,它安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的应用实现,并根据输出的结果分析业务需求,为进行合理、有效的策略优化提供数据支撑。课程培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。点击预约免费试听课。

Ⅵ 什么是数据挖掘数据挖掘怎么做啊

数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:

(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。

(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。

(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。

阅读全文

与数据挖掘领域是什么相关的资料

热点内容
如何开启笔记本电脑的无线网络 浏览:4
下列不属于国家核心数据有哪些 浏览:771
云币网怎么没app 浏览:562
苹果手机装电脑系统怎么安装驱动程序 浏览:105
win10上的deg和rad和grad 浏览:499
iphone6s软件更新好不好 浏览:726
jscheckboxdisabled 浏览:472
微信发送的图片如何粘贴到文件 浏览:873
手机如何传输文件 浏览:200
华为手机微信怎么没有信息图标 浏览:695
直径120球形圆弧怎么编程 浏览:339
word2003公式中 浏览:423
识鸟的app哪个好 浏览:876
phpjquery瀑布流代码 浏览:849
如何更改无线网络设置 浏览:136
微信发红包合法吗 浏览:52
抖音年度可视化数据在哪里生成 浏览:327
数据返回原页怎么保存 浏览:271
js单例创建一个对象 浏览:342
可删除的手机文件在手机哪个窗口 浏览:354

友情链接