导航:首页 > 数据分析 > 面板数据非线性回归有哪些

面板数据非线性回归有哪些

发布时间:2023-11-10 09:46:20

⑴ 常见的非线性回归模型有哪几种

1、简非线性模型

非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无法通过代换转化为线性回归模型。

2、可化为线性回归的曲线回归

在实际问题当中,有许多回归模型的被解释变量y与解释变量×之间的关系都不就是线性的,其中一些回归模型通过对自变量或因变量的函数变换,可以转化为常见非线性回归模型线性关系,利用线性回归求解未知参数,并作回归诊断。

3、多项式回归

多项式回归模型就是一种重要的曲线回归模型,这种模型通常容易转化为一般的多元线性回归来做处理。

4、非线性模型

在非线性回归中,平方与分解式SST=SSR+SSE不在成立,类似于线性回归中的复决定系数,定义非线性回归的相关指数:R/2=1-SSE/SST

(1)面板数据非线性回归有哪些扩展阅读

在许多实际问题中,回归函数往往是较复杂的非线性函数。非线性函数的求解一般可分为将非线性变换成线性和不能变换成线性两大类。

回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。

⑵ spss非线性回归分析步骤

概述

按照自变量和因变量之间的关系类型,回归分析可分为线性回归分析和非线性回归分析。非线性回归的回归参数不是线性的,也不能通过转换的方法将其变为线性。

原理

非线性回归是用来建立因变量与一系列自变量之间的非线性关系,与估计线性模型的线性回归不同,通过使用迭代估计算法,非线性回归可估计自变量和因变量之间具有任意关系的模型。

对于看起来是非线性的模型,但是可以通过变量转换化成线性的模型,称之为本质线性模型。

操作方法
01
本节内容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析
用SPSS进行回归分析,实例操作如下:

02
单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:

03
请单击Statistics…按钮,可以选择需要输出的一些统计量。如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。上述两项为默认选项,请注意保持选中。设置如图7-10所示。设置完成后点击Continue返回主对话框。
回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

04
用户在进行回归分析时,还可以选择是否输出方程常数。单击Options…按钮,打开它的对话框,可以看到中间有一项Include constant in equation可选项。选中该项可输出对常数的检验。在Options对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程的准则,这里我们采用系统的默认设置,如图7-11所示。设置完成后点击Continue返回主对话框。

⑶ 怎么判断是线性回归还是非线性回归

在计量经济学中,线性或非线性,不是针对自变量而言的,也就是X,而是针对自变量的系数参数而言的.如:
y=a+bx这是线性,y=a+bx+cx^2这也是线性,因为a b c导数都是常数,或者说都是1次的,而y=a+bcX1+dX2,这样的模型就是非线性的,因为bc是2次的.区分其实就这么简单.先说原理,数据中隐含有模式,要做的是把模式提取出来(即模型)。模式提取的充分与否,是看残差(提取模式后剩下的)是否不再含有模式,如果是,则残差服从0附近的正态分布(即随机白噪声),此时模型已经是成功的充分模型。否则,说明数据中的模式没有完全提取出来,模型是不充分的,需要继续改进。

再说具体操作,可以先选用简单的多元线性回归模型,然后检验残差,若是随机白噪声,则完成建模。否则就需要继续引入各变量的非线性项、交互项,当然优先从低次到高次。那么引入很多项进来,如何取舍,用逐步回归即可。

阅读全文

与面板数据非线性回归有哪些相关的资料

热点内容
源代码安全测试工具 浏览:594
dbf转换成word文件 浏览:784
puttylinux下载文件 浏览:412
如何开启笔记本电脑的无线网络 浏览:4
下列不属于国家核心数据有哪些 浏览:771
云币网怎么没app 浏览:562
苹果手机装电脑系统怎么安装驱动程序 浏览:105
win10上的deg和rad和grad 浏览:499
iphone6s软件更新好不好 浏览:726
jscheckboxdisabled 浏览:472
微信发送的图片如何粘贴到文件 浏览:873
手机如何传输文件 浏览:200
华为手机微信怎么没有信息图标 浏览:695
直径120球形圆弧怎么编程 浏览:339
word2003公式中 浏览:423
识鸟的app哪个好 浏览:876
phpjquery瀑布流代码 浏览:849
如何更改无线网络设置 浏览:136
微信发红包合法吗 浏览:52
抖音年度可视化数据在哪里生成 浏览:327

友情链接