Ⅰ 大数据分析工程师教你,如何进行数据分析
【导读】作为大数据分析工程师,数据的分析属于日常工作的范畴,从数据的采集,到数据的导入,再到数据的集中处理,最后得出数据分析的结构,都需要进行数据的处理和筛选,那么数据分析的方法有哪些呢?下面我们就来具体看看吧。
1、数据库自主进行数据处理
通过SQL语句来表达,过滤掉一些无用的数据信息,这样会大大提高数据处理的效率,所以SQL语句的学习必不可少。
2、用BI商业智能工具分析
它能实现大数据量的计算和可视化的前端展示,会抽取相关数据字段,ETL过滤清洗完之后,生成Excel表格文件。
要想使用以上的两种方法进行数据处理,就要学习SQL语句和FineBI 商业智能工具,这样会是数据处理效率大大提升,并且能处理复杂的数据。
Ⅱ 如何自学数据分析
很多人都觉得,自己是文科类出身,或者对数理专业不熟悉,会很难上手数据分析。其实不是这样子的,学习数据分析,不同于程序员,它不会专门要求我们一定要掌握编程,只是理解熟悉就可以。个人的逻辑思维能力、个人兴趣所在,以及自身的决心毅力,这些才是构成一个人学成与否的关键和最重要因素。
小编觉得最重要的一点就是,我们得清楚企业对数据分析师的基础技能需求是什么。这样我们才能有的放矢。我大抵总结如下:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
之后,怎么安排自己的业余时间就看个人了。总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
Ⅲ 数据分析师面试题目和答案:动手题
【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。一般情况下用人单位会给问答题和动手题来检测应聘者的真实实力,可以说面试笔试是非常重要的一个环节。它可以直接测验你对数据分析具体理论的掌握程度和动手操作的能力。为此小编就以此为例和大家说说2020年数据分析面试解答技巧:动手题,希望对大家有所帮助。
动手题
1. 我给你一组数据,如果要你做数据清洗,你会怎么做?
实际上,这一道题中,面试官考核的是基本的数据清洗的准则,数据清洗是数据分析必不可少的重要环节。你可能看到这个数据存在 2 个问题:典韦出现了 2
次,张飞的数学成绩缺失。
针对重复行,你需要删掉其中的一行。针对数据缺失,你可以将张飞的数学成绩补足。
2. 豆瓣电影数据集关联规则挖掘
在数据分析领域,有一个很经典的案例,那就是“啤酒 +
尿布”的故事。它实际上体现的就是数据分析中的关联规则挖掘。不少公司会对这一算法进行不同花样的考察,但万变不离其宗。
如果让你用 Apriori 算法,分析电影数据集中的导演和演员信息,从而发现两者之间的频繁项集及关联规则,你会怎么做?
以上就是小编今天给大家整理发送的关于“数据分析师面试题目和答案:动手题”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。