❶ 数据师是什么工作
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
一、数据分析师主要工作内容如下:
1、通过数据分析支持产品改进及新模式的探索;
2、构建用户行为建模,支持个性化项目;
3、构建数据评估体系;
4、构建业务数据分析体系,帮助确定各项业务数据指标;
5、负责用户行为数据分析,通过监控及分析,推动产品改进,运营调整;
6、负责用户数据模型,挖掘用户属性及用户喜好等需求,为个性化产品推荐提供支持;
7、负责构建产品、运营及活动用户行为评估体系,通过数据分析对产品、运营、市场提出建议并推动实施;
8、负责用户行为调研,通过海量数据的挖掘和分析,形成报告,汇报给决策层,支持战略规划 。
二、数据分析师岗位要求如下:
1、统计学、应用数学、计算机等相关专业,本科及以上学历;
2、熟练掌握多种统计和挖掘方法,熟练使用SPSS、SAS等相关数据分析软件;
3、较强的数据敏感度,逻辑分析能力和文档写作能力;
4、有责任心,良好的沟通能力和组织管理能力以及心理承受能力,勇于接受挑战;
5、有相关经验优先。
备注:
SPSS(Statistical Proct and Service Solutions),"统计产品与服务解决方案"软件。
SAS(Statistical Analysis System)是由美国北卡罗来纳州州立大学1966年开发的统计分析软件,总部位于美国北卡罗来那州的凯瑞, 是全球最大的私有软件公司。 1976年SAS软件研究所(SAS Institute Inc.)成立,开始进行SAS系统的维护、开发、销售和培训工作。
❷ 数据分析师主要是做什么工作的
数据分析师工作的流程简单分为两部分,第一部分就是获取数据,第二部分就是对数据进行处理。那么怎么获得数据呢?首先,我们要知道,获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。因此,基础的SQL语言是必须的。具备基本SQL基础,再学习下其中细节的语法,基本就可以到很多数据了。当每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。
获得了数据以后,才能够进行数据处理工作。获取数据,把数据处理成自己想要的东西,是一个关键点。很多时候,有了数据不是完成,而是分析的开始。数据分析师最重要的工作就是把数据根据需求处理好,只有数据跟需求结合起来,才能发挥数据的价值,看到需求的问题和本质所在。如果连数据都没处理好,何谈从数据中发现问题呢?
就目前而言,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。所以我们要使用专业的数据分析软件。数据分析工具都有Excel、SPSS、SAS等工具。Excel、SPSS、SAS 这三者对于数据分析师来说并不陌生。但是这三种数据分析工具应对的数据分析的场景并不是相同的,一般来说,SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析。而SPSS和SAS作为商业统计软件,提供研究常用的经典统计分析处理。由于SAS 功能丰富而强大,且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。
❸ 数据分析师是干嘛的数据分析师的工作职责是什么
【导读】大家都知道,近几年大数据发展的特别的火,很多人报班学习大数据,做起了大数据工程师,数据分析师从某些角度也推动了社会以及企业的发展,不少大厂都都增加了与数据相关的岗位的招聘人数。那么你知道数据分析师是干嘛的?数据分析师的工作职责是什么吗?一起来看看吧!
对于每一个数据分析师来说,业务实践数据的分析都是重中之重,这已经大家默认的共识了。但是,怎样将业务实践带入到数据分析中呢?这个问题却没有得到大多数人的共识。其中,有一种看法是说,参加数据建模比赛可以实现数据业务化。当然,参加数据建模比赛,是很多数据爱好者共同追捧的赛事。其中,比赛时会给到参赛者很多真实的业务数据,能在很大程度上,帮助数据分析师们提升自身的数据分析技能。
数据业务化
所谓的数据业务化,就是在实际业务环境中,给已有数据赋值,从而提升产品的商业价值。简单来说,就是通过已有的运营数据,找出数据中的规律,总结出改进方向,从而指导产品的销售、包装等各个方面的策略,从而提升产品的商业价值。
这里所谓的找出数据中的规律,总结改进方向,可以从两个层面来理解:一是数据智能化,二是数据创新化。前者主要利用大数据技术,持续提升产品的用户体验,如推荐系统、信用评级等。而后者主要在于有效积累数据,用于新业务的开展。
从这个角度看,数据业务化至少包括3个关键环节,包括数据业务定义、数据分析与建模、数据业务实施。
(1)数据业务的定义
在现实生活中,数据可能不是大家主要关注的对象,大家真正关心的其实是业务。因为,只有业务满足了公司的基础需求,企业才能存活。
然而,不可忽视的一点是,只要有业务产生,就会有与之匹配的各类数据产生。如果不分析这些产生的数据,只埋头做业务,在体量较小的情况下,是能维持正常的业绩的。但若一个企业寻求发展,那么,势必需要数据分析。因为,人的经验很多情况下是不准确的。因此,数据分析是助力企业核心业务发展的重要因素。
在这个前提下,一个数据分析师到一家新的企业后,很少有人能告诉你该分析什么数据,更不会有人告诉你如何从企业老旧的数据系统中得到有用的数据。因为,他们只会告诉你他们关心什么业务,希望提升多少业务指标。
由此,你也能得出一个结论,那就是你需要把业务问题定义为数据可分析问题。
(2)数据分析与建模问题
先来给大家分享一个小故事,然后我们再来进入主题。
例:一个做外卖的平台的朋友,提出这样一个问题:他们一个客户非常认可他们的数据价值,希望通过外卖平台的数据,帮助店铺提升餐品的好评率,从而促进成单率。
这就是一个很典型的业务问题了。但是,这个问题怎么用数据分析的方式来处理呢?
首先我们要做的,就是将它通过数据对业务需求进行清晰定义。比如,餐品原来的好评率是80%,将它提升至90%,这样就会好处理很多。
可事实上,我们要得出80%这个结论,其实是很难的。因为,一个餐品的品质怎么叫“好”,怎么叫“坏”?因此,我们需要一个清晰定义的标准,并为之得出一个业务认可的因变量Y。
然而,无论你如何定义Y,都不可避免地会介入主观认知。因此,在这类复杂业务场景中,是没有唯一正确答案,即便是任何数据建模比赛,也无法模拟出结论。
那么,在这种情况下,难道我们就真的无法做出数据分析了吗?
事实上,并不是这样的。一旦业务问题被定义为数据可分析问题,它的核心业务诉求就会变得清晰,就可以构成了因变量Y。此外,相关的业务知识被头脑风暴,就构成了解释性变量X。从Y、X出发,我们可以通过各种回归分析模型、机器学习模型来做对应的分析。
各类回归模型,或其他机器学习中的算法模型甄选出合适的数据分析模型,从而拟出适用于前业务需求的精准化模型,为业务数据智能化提供更好的有效预测。
(3)数据业务实施
在数据分析和建模流程处理完成后,接下来,我们就要把这些结论转化成现实环境下可以被实施的产品中。然而,这一步是比较困难的。在现实的业务场景中,即使模型做得很好,但是最后如何同业务结合,变成可执行的产品,仍然是极具挑战的事情。
因为,这里面涉及了很多企业资源、法律法规、政策制度、生活传统等问题。
例:国外的很多搬运工人都是按照既定的量给货车装卸货物的。即,企业核算了任务量和交货日期后,就会计算每个工人每天的工作量(件数)等,按照当地的劳动标准,给工人任务量。因此,工人基本不会提早完成任务。
而在国内,我们更习惯“早点做完早点休息”,因此,很少有企业会告诉工人每天的工作数量,也不会因为工人提前完成任务而少付工资。
由此,我们不难看出,这里面主要困难就是数据业务的合理实施。所以,前面我们说,这么复杂的事情,不是任何数据建模比赛可以模拟的。
归纳总结
简单总结一下,数据业务化的核心是让数据产生价值。为此,需要三个环节:
1)将业务问题定义为数据可分析问题;
2)对数据可分析问题做分析建模;
3)对最后的分析结果和模型进行业务实施。
另外,参加数据建模比赛能够对2)提供很大的帮助;但是对1)和3)帮助甚微。而最具挑战、最有价值的,恰恰是1)和3)。
以上就是小编今天给大家整理的关于“数据分析师是干嘛的?数据分析师的工作职责是什么?”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
文章来源:https://wenda.hqwx.com/article-42045.html
❹ 数据分析师是一个什么样的职业
数据分析师分布在不同行业中,专门从事行业数据的搜集、整理、分析,并依据数据做出行业研究、评估和预测。数据分析师需要敏锐的数字洞察力,因此,统计、会计、保险、工程经济、金融、数学、计算机等专业的同学对这个行业有明显优势,但其他行业的同学如果对这个职业感兴趣,通过日常学习,掌握一些统计必备技能,亦可以从事此类工作.
主要工作领域:
1、从事投资项目审核审批和招商引资、项目评估、投资决策等工作的政府机构、企业的相关领导以及从业人员。
2、在银行或非银行金融机构、投资管理公司、投资管理顾问公司从事风险投资、产业投资、信贷和投资管理等方面工作的专业从业人员。
3、会计师事务所、资产评估事务所及税务师事务所、律师相关专业人员。
4、学习财务、统计、投资、金融和企业管理等相关专业的在校应届学生。
5、在企事业单位从事市场调查与宣传工作的人士以及具有策划与决策工作职能要求的人士。
6、在不同领域尝试创业以及在投资、金融、资本运营、房地产和企业管理领域发展的各界人士。
数据分析师的工作内容分为四个层面:
1、处理临时需求:解决业务一次性,临时性的数据需求。
2、报表开发:根据业务需要,与开发工程师讨论进行相关报表开发。
3、数据分析与挖掘:与业务同事一起沟通,分析业务问题,提供建议;根据业务需要建立各类挖掘模型。
4、数据产品化:通过数据产品化方式解决结构化业务问题。
数据分析师的基本要求:
1、懂得建立目标
数据分析是为了解决问题而去分析,不是单纯为分析而分析。数据分析是有目的性的。比如:一季度ABC产品的销售情况,是按月份为横坐标建立各部门的图表;各产品线ABC在一季度的销售情况,是按部门为横坐标建立对应的图表。
2、针对不同人群提供不同的结论报告
数据分析要有结论报告,不同的人群报告的侧重点不同。比如管理层,看的是趋势和异常点;营销人员看的是ROI((Return On Investment)产出比率和高用户质量的导入情况;业务人员看的是产品对用户的活跃度等。
3、掌握数据分析工具
如果是互联网数据分析,可以从google GA入门,EXCEL辅助,了解数据分析的基本算法。至于SAS,SPSS这些高级工具不一定需要。
4、不同时期要有不同的KPI(KeyPerformance Indicator,关键绩效指标)
不断的调整目标和发现问题是数据分析精细化的必经过程。
❺ 什么是数据分析带你了解数据分析的日常工作
【导读】随着互联网事业的发展,以及不断更新的人工智能、物联网等技术,都离不开数据分析,那么什么是数据分析?为什么时下数据分析师是比较热门的高薪职业呢?很多小伙伴认为数据分析师就是简单的将数据收集,然后统计最后给出结论这样的工作,其实不然,下面小编带你了解数据分析的日常工作,让你对数据分析师有个更加全面的了解。
数据分析师的日常
日常一:不固定的工作时间
很多上班族的工作时间都是固定的,做五休二,朝九晚五,不免让人感到乏味。数据分析师却不然,他们没有固定的工作时间。因为数据分析师需要根据实时数据给出最新结论。换而言之,数据分析师就是要时刻准备着。
日常二:和数据打交道
数据分析师的日常就是与各种各样的数据打交道。他们需要花费大量的时间来收集、整理数据。这两个步骤看似简单,但是如果将步骤细分,就有些复杂了。这些步骤主要包括:
1.提取数据。2.合并资料。3.分析数据。4.寻找模式或趋势。5.使用各种工具,包括R,Tableau,Python,Matlab,Hive,Impala,PySpark,Excel,Hadoop,SQL和SAS。6.开发和测试新算法。7.试图简化数据问题。8.开发预测模型。9.建立数据可视化。10.写出结果并与他人分享。11.汇集概念证明……
但是这些任务都是数据分析师的次要任务,数据分析师的主要任务还是先确定问题,然后再通过尝试不同的办法来解决问题。
日常三:让数据变得通俗易懂
有人认为,数据分析师是可有可无的。这样的人往往不具备前瞻性。事实恰恰相反,数据分析师不仅仅需要建立模型,还需要解决问题。他们需要对数据进行处理,需要从小的角度看到全局,整理出简洁明了的报告,从而让外行人明白数据的含义。
日常四:不断汲取新的知识
数据分析师盯着电脑只会是在分析数据吗?
NO!他们可能是在:
1.浏览与行业相关的博客、新闻、通讯以及讨论区。
2.参加会议或者和其他数据分析师在线交流。
3.探索出新方法时,和同行共享新信息。......
除了在数据中挖掘宝藏信息,数据分析师还需要在数据分析领域不停地钻研。一个优秀的数据分析师,只有通过不断地学习新的知识,才能与时俱进,不被社会淘汰。
以上就是小编今天给大家整理分享关于“什么是数据分析?带你了解数据分析的日常工作”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
❻ HR数据分析师是什么
偏人力的数据分析师。
一、薪酬
先说重要的,出来工作嘛,主要是为了薪酬。我在这个职能做了也已经三年多了,期间也接触了不少外部机会。总的来说薪酬并不比业务分析方向差,起步薪酬甚至比业务数据分析好的不是一点半点。主要原因,一是目前市场上这个方向的数据分析师很少,供不应求;二是有需求这个职位的基本都是大公司,在华员工数打底两千人以上,或者千人以上并处于急速扩张中的,本身这种类型企业的薪酬就不会太差。但是目前的问题在于,起步价不低,可是封顶也不高。这个我会在下面职业发展一块详细来说。不过封顶这事情吧,你没到一定级别还是不需要考虑太多的。
二、职业发展
这个还是看职位归属的部门的。
以前我是做业务方向的,基本上都是个人直线或者所在部门直线汇报给业务老大(GM-1)。这种情况下你可以在自己岗位按部就班的晋升到老大以下的最高级别,总体发展态势还是不错的。
而HR就有点特殊了。国内很多公司(无论国企外企),人力资源分析都处于起步阶段,定位就没有那么明确,汇报线也是千奇百怪。多数公司的HR都是按照三支柱理论,分为业务伙伴(HRBP)、专家(COE)和共享服务中心(SSC)。常见的一种情况是人力资源数据分析被划在了SSC(三个支柱中最底层,员工最junior的),原因是HR所有数据都产生于SSC。顺理成章的,因为数据产生于SSC,所以数据分析师需要汇报给SSC的头儿(GM-2)或者是SSC分管非工资、非流程的“杂务”的头儿(GM-3)。从职业发展上来看,你的上限比业务分析低了一到二层,有一定的“外行领导内行”的风险。如果要进一步发展,你几乎都不得不承担其他莫名其妙的杂务。我曾经收到过某个知名外企电话,招聘的数据分析岗位居然同时需要帮助上海员工办理社保,并处理外籍员工的公司股票购买事务(外汇、税务什么的),简直莫明其妙。不过好在目前我的公司发现了这个问题,正在逐步使数据分析脱离SSC序列,转为专家一类的独立部门。相信随着数据分析价值的体现,越来越多的公司会发生这样子的转型。如此这般,人力资源数据分析从业者的上限将会被打开,甚至将会成为未来HR Head职位的角逐者之一。
三、工作内容
相比业务数据分析师而言,HR的数据分析师工作并不简单,多数情况下甚至还更加繁杂。
一是HR部门对于数据的意识不如业务部门高,历史数据的质量很差,初期你会不得不投入很大精力去完善数据保存,甚至是研究流程,乃至帮助流程管理方去提高流程数据的质量。
二呢,不是我抱有偏见,HR部门是个比较浮的部门,很喜欢fancy的东西,搞个大新闻。你一入职就会希望你能拿出一些很炫的产出(dashboard啊、离职预测啊什么的),你得要不断的说服他们先去清理历史数据,积攒一段时间的数据。三是普遍来看,现在的HR对于数据的认识远不如业务。你别老看他们培训时候张口闭口的change mindset(拥抱变化的思维),在自己的职能方向,HR的思维是非常固化的。我就亲眼见过群里从讨论AI和数字化时代在不到十分钟里变成了“HR的职能依靠沟通和经验,是不可能被数字化工具和AI取代的”(黑人问号.jpg)。我还见过不少HRBP在入职两年以后连离职率公式都不知道的。(讲到KPI公式,这是一个大坑,离职当天的人算不算当天的员工数、试用期通过率用延迟计算公式还是即时计算公式,作为数据分析师都会头大,遑论HR们了。)
不过,数据意识不强这一点也有好处,那就是他们不会拘泥于每一个数字细节,大方向差不多就成了。熟悉我的朋友都知道,我以前做业务分析时候,老板是个浆糊阿三,但是他特别喜欢抠数字,我的收入总数和财务差了一分钱人民币都会叫我查一下差异的原因在哪里(基本都是汇率的保留小数位数问题)。在HR部门,这种蠢事会相对较少一点(如果你们公司global团队不那么愚蠢的话)。
四、部门关系
基本上,作为HR数据分析师,你和外部门关系本该只是一个数据出口。但是获取数据的人不会这么认为,他们会觉得数据有错了找你就行了,你不仅应该知道错在哪里,而且应该负责把他改正了。不过这个问题也不仅是HR分析存在的问题吧,但凡做数据的岗位,都会被这个问题困扰。
五、项目
项目其实是HR数据分析的一个难点。因为习惯或者文化问题,你的客户很少会在遇到困难时想到用数据分析的方法去定位和解决问题。HRBP们更喜欢凭自己的经验,收集一些特例并无限放大特例的普遍性,来寻找和解决“问题”。不能说这个方法完全无效,但是这样子的思维很不利于数据分析文化的普及。
还有一些项目,比如离职预测、职位匹配等等,很新潮、容易吸引眼球,再加上HR的宣传能力,套上AI啊、大数据什么的包装,宣传效果一级棒。所以HR喜欢花钱做这种项目。不过往往最后建模什么的不那么难,但在实际应用时候会遇到阻碍。比如预测离职,你能把风险用户直接给直线经理吗?(以现在经理的素质,你都不知道人最后走了是模型准还是被经理逼走了。)比如职位匹配,很多直线经理会极度反感你们给员工提供内部职位的机会。怎么去应用项目,永远永远是最大的问题。