㈠ 大数据分析师到底是干什么的呢
大数据分析师,无疑是在大数据时代受到格外重视的一个岗位,尤其是具备专业技能以及行业经验的大数据分析人才,无疑是企业竞相争抢的“香饽饽”。而随着大数据行业的进一步发展,人才需求增加,大数据分析师培训也多了起来。那么,大数据分析师培训完是干嘛的?主要工作做什么呢?
数据分析主要是做数据的收集、挖掘、清洗、分析,最后形成具有业务价值的分析报告. 大包括数据体量的大,也包括数据维度的广.
大数据分析师是个很重要的工作,就是通过分析数据来找出过去事件的特征。通过引入关键因素,大数据工程师可以预测未来的消费趋势。在各种的营销平台上,数据分析师试图通过引入气象数据来帮助淘宝卖家做生意。
举例
今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
大数据分析师需要掌握的技能有五点
懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,较好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
懂管理。
方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另
方面的作用是针对数据分析结论提出有指导意义的分析建议。
懂分析。指掌握数据分析基本原理与
些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高
的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果 目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握设定的设计原则。
大数据分析师就业前景如何?
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
以上就是关于大数据分析师主要工作做什么以及就业前景,大数据分析师正在企业当中获得越来越多的重视,学习专业技能,掌握专业技能,才能站稳脚跟。想要了解大数据分析师,欢迎跟我聊聊呦。
㈡ 大数据上班都干什么
不同岗位工作内容不同:
1、大数据项目经理
工作内容:项目需求、进度、质量、成本管理。
2、大数据开发工程师
工作内容:主要是基于Hadoop、Spark等平台上面进行开发,各种开源技术框架平台很多,需要看企业实际的选择是什么,但目前Hadoop、Spark仍然占据广大市场。
3、大数据产品经理
工作内容:大数据相关产品规划设计,需要与需求部门及技术部门沟通协调。
4、数据分析师
工作内容:收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。
大数据发展前景
根据数据显示,大数据行业的岗位每年在以超过20%的速度递增着,这样来看的话很自然地就会产生大量的岗位机会,并且可以相信的是随着行业快速发展,岗位也随着企业的业务增长不断增多,要知道现在各大高校都开设了新的与大数据相结合的课程,未来大数据发展肯定会越来越好。
㈢ 大数据工作岗位有哪些 就业方向是什么
大数据工作岗位主要围绕数据价值化来展开,涉及到数据采集、数据整理、数据存储、数据分析、数据安全、数据应用等诸多方面。大数据的就业前景很好,未来发展十分广阔。
大数据工作1、大数据开发工程师
架构的开发、构建、测试和维护;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计和产品开发等。
大数据工作2、数据分析师
收集、处理和执行统计数据分析;应用工具提取、分析、呈现数据,实现数据的业务意义,需要业务理解和工具应用能力。
大数据工作3、数据挖掘工程师
数据建模、机器学习和算法实现;商业智能、用户体验分析、用户流失预测等;除了强大的迹则灶数学和统计能力,对算法代码实现也有很高的要求。
大数据工作4、数据架构师
需求分析、平台选择、技术架构设计、应用设计与开发、测试与部署;先进的算法设计和优化;需要具备数据相关的系统设计和优化、平台级开发和架构设计能力。
大数据工作5、数据库开发
根据客户需求设计、开发和实现数据库系统,通过理想的接口连接数据库和数据库工具,优化数据库系统的性能和效率等。
大数据工作6、数据库管理
数据库设计、数据迁移、数据库性能管理、数据安全管理、故障排除、数据备份、数据恢复等。
大数据工作7、数据科学家
数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率,挖掘数据价值,实现数据到知识的转化。
大数据工作8、数据产品经理
结合数据和业务,做数据产品;平台线提供基础平台和通用数据工具,业务线提供更贴近业务的分析框架和数据应用。
从近两年大数据方向研究生的就业情况来看,姿扮大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
大数据开发工作岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的工作机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。
㈣ 学大数据会有什么工作
大数据领域的工作分为两个方向:
一是大数据维护、研发、架构工程师方向的工作;所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等
二是大数据挖掘、分析方向的工作;所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等
大数据开发工程师和大数据分析师:大数据开发主要是基于大数据服务平台,很多大中型业务应用包括企业级应用和各类网站。能够进行构建大数据应用程序平台和开发分析应用程序。
企业对员工的工作需求都非常大,大数据分析方向将是未来职业人才岗位缺口最大的工作之一,它将会和软件人才一样,再次掀起一次培训:在大数据分析方向的最高端将会按行业划分,一个牛的大数据分析专家将是某一个或者二个行业的专家
大数据培训的第二个方向
大数据工程师的工作:鉴于现在大数据人才缺口较大,能够做大数据开发培训的机构很少,大数据的学习需要java基础,虽然很多培训机构都要java课程,但是有大数据培训课程的机构还比较少。选择时需要谨慎些。在选择时一定要注意课程是否包含了Hadoop、hive、hbase、spark等大数据技术课程