❶ 如何进行大数据处理
大数据处理之一:收集
大数据的收集是指运用多个数据库来接收发自客户端(Web、App或许传感器方式等)的 数据,而且用户能够经过这些数据库来进行简略的查询和处理作业,在大数据的收集进程中,其主要特色和应战是并发数高,因为同时有可能会有成千上万的用户 来进行拜访和操作
大数据处理之二:导入/预处理
虽然收集端本身会有许多数据库,但是假如要对这些海量数据进行有效的剖析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或许分布式存储集群,而且能够在导入基础上做一些简略的清洗和预处理作业。导入与预处理进程的特色和应战主要是导入的数据量大,每秒钟的导入量经常会到达百兆,甚至千兆等级。
大数据处理之三:核算/剖析
核算与剖析主要运用分布式数据库,或许分布式核算集群来对存储于其内的海量数据进行普通 的剖析和分类汇总等,以满足大多数常见的剖析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及根据 MySQL的列式存储Infobright等,而一些批处理,或许根据半结构化数据的需求能够运用Hadoop。 核算与剖析这部分的主要特色和应战是剖析触及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:发掘
主要是在现有数据上面进行根据各种算法的核算,然后起到预测(Predict)的作用,然后实现一些高等级数据剖析的需求。主要运用的工具有Hadoop的Mahout等。该进程的特色和应战主要是用于发掘的算法很复杂,并 且核算触及的数据量和核算量都很大,常用数据发掘算法都以单线程为主。
关于如何进行大数据处理,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❷ 大数据集群
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
魔方(大数据模型平台)
大数据模型平台是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
大数据平台数据抽取工具
大数据平台数据抽取工具实现db到hdfs数据导入功能,借助Hadoop提供高效的集群分布式并行处理能力,可以采用数据库分区、按字段分区、分页方式并行批处理抽取db数据到hdfs文件系统中,能有效解决大数据传统抽取导致的作业负载过大抽取时间过长的问题,为大数据仓库提供传输管道。数据处理服务器为每个作业分配独立的作业任务处理工作线程和任务执行队列,作业之间互不干扰灵活的作业任务处理模式:可以增量方式执行作业任务,可配置的任务处理时间策略,根据不同需求定制。采用异步事件驱动模式来管理和分发作业指令、采集作业状态数据。通过管理监控端,可以实时监控作业在各个数据处理节点作业任务的实时运行状态,查看作业的历史执行状态,方便地实现提交新的作业、重新执行作业、停止正在执行的作业等操作。
互联网数据采集工具
网络信息雷达是一款网络信息定向采集产品,它能够对用户设置的网站进行数据采集和更新,实现灵活的网络数据采集目标,为互联网数据分析提供基础。
未至·云(互联网推送服务平台)
云计算数据中心以先进的中文数据处理和海量数据支撑为技术基础,并在各个环节辅以人工服务,使得数据中心能够安全、高效运行。根据云计算数据中心的不同环节,我们专门配备了系统管理和维护人员、数据加工和编撰人员、数据采集维护人员、平台系统管理员、机构管理员、舆情监测和分析人员等,满足各个环节的需要。面向用户我们提供面向政府和面向企业的解决方案。
显微镜(大数据文本挖掘工具)
文本挖掘是指从文本数据中抽取有价值的信息和知识的计算机处理技术, 包括文本分类、文本聚类、信息抽取、实体识别、关键词标引、摘要等。基于Hadoop MapRece的文本挖掘软件能够实现海量文本的挖掘分析。CKM的一个重要应用领域为智能比对, 在专利新颖性评价、科技查新、文档查重、版权保护、稿件溯源等领域都有着广泛的应用。
数据立方(可视化关系挖掘)
大数据可视化关系挖掘的展现方式包括关系图、时间轴、分析图表、列表等多种表达方式,为使用者提供全方位的信息展现方式。
❸ 搭建大数据平台的具体步骤是什么
1、操作体系的挑选
操作体系一般使用开源版的RedHat、Centos或许Debian作为底层的构建渠道,要根据大数据渠道所要建立的数据剖析东西能够支撑的体系,正确的挑选操作体系的版本。
2、建立Hadoop集群
Hadoop作为一个开发和运行处理大规模数据的软件渠道,实现了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。Hadoop结构中最核心的规划是HDFS和MapRece,HDFS是一个高度容错性的体系,合适布置在廉价的机器上,能够供给高吞吐量的数据访问,适用于那些有着超大数据集的应用程序;MapRece是一套能够从海量的数据中提取数据最终回来成果集的编程模型。在生产实践应用中,Hadoop非常合适应用于大数据存储和大数据的剖析应用,合适服务于几千台到几万台大的服务器的集群运行,支撑PB级别的存储容量。
3、挑选数据接入和预处理东西
面临各种来源的数据,数据接入便是将这些零散的数据整合在一起,归纳起来进行剖析。数据接入首要包括文件日志的接入、数据库日志的接入、关系型数据库的接入和应用程序等的接入,数据接入常用的东西有Flume,Logstash,NDC(网易数据运河体系),sqoop等。
4、数据存储
除了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hbase,HBase是一种key/value体系,布置在HDFS上,与Hadoop一样,HBase的目标首要是依靠横向扩展,通过不断的添加廉价的商用服务器,添加计算和存储才能。同时hadoop的资源管理器Yarn,能够为上层应用供给统一的资源管理和调度,为集群在利用率、资源统一等方面带来巨大的优点。
5、挑选数据挖掘东西
Hive能够将结构化的数据映射为一张数据库表,并供给HQL的查询功能,它是建立在Hadoop之上的数据仓库根底架构,是为了削减MapRece编写工作的批处理体系,它的出现能够让那些通晓SQL技术、可是不熟悉MapRece、编程才能较弱和不擅长Java的用户能够在HDFS大规模数据集上很好的利用SQL言语查询、汇总、剖析数据。
6、数据的可视化以及输出API
关于处理得到的数据能够对接主流的BI体系,比如国外的Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可免费试用)等,将成果进行可视化,用于决策剖析;或许回流到线上,支撑线上业务的开展。
❹ 如何为大数据处理构建高性能Hadoop集群
越来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。
关于Hadoop
“大数据”是松散的数据集合,海量数据的不断增长迫使企业需要通过一种新的方式去管理。大数据是结构化或非结构化的多种数据类型的大集合。而 Hadoop则是Apache发布的软件架构,用以分析PB级的非结构化数据,并将其转换成其他应用程序可管理处理的形式。Hadoop使得对大数据处理成为可能,并能够帮助企业可从客户数据之中发掘新的商机。如果能够进行实时处理或者接近实时处理,那么其将为许多行业的用户提供强大的优势。
Hadoop是基于谷歌的MapRece和分布式文件系统原理而专门设计的,其可在通用的网络和服务器硬件上进行部署,并使之成为计算集群。
Hadoop模型
Hadoop的工作原理是将一个非常大的数据集切割成一个较小的单元,以能够被查询处理。同一个节点的计算资源用于并行查询处理。当任务处理结束后,其处理结果将被汇总并向用户报告,或者通过业务分析应用程序处理以进行进一步分析或仪表盘显示。
为了最大限度地减少处理时间,在此并行架构中,Hadoop“moves jobs to data”,而非像传统模式那样“moving data to jobs”。这就意味着,一旦数据存储在分布式系统之中,在实时搜索、查询或数据挖掘等操作时,如访问本地数据,在数据处理过程中,各节点之间将只有一个本地查询结果,这样可降低运营开支。
Hadoop的最大特点在于其内置的并行处理和线性扩展能力,提供对大型数据集查询并生成结果。在结构上,Hadoop主要有两个部分:
Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。而传统的Linux系统下的较为典型的数据块大小可能是4KB。
MapRece引擎通过JobTracker节点接受来自客户端的分析工作,采用“分而治之”的方式来将一个较大的任务分解成多个较小的任务,然后分配给各个TaskTrack节点,并采用主站/从站的分布方式(具体如下图所示):
Hadoop系统有三个主要的功能节点:客户机、主机和从机。客户机将数据文件注入到系统之中,从系统中检索结果,以及通过系统的主机节点提交分析工作等。主机节点有两个基本作用:管理分布式文件系统中各节点以及从机节点的数据存储,以及管理Map/Rece从机节点的任务跟踪分配和任务处理。数据存储和分析处理的实际性能取决于运行数据节点和任务跟踪器的从机节点性能,而这些从机节点则由各自的主机节点负责沟通和控制。从节点通常有多个数据块,并在作业期间被分配处理多个任务。
部署实施Hadoop
各个节点硬件的主要要求是市县计算、内存、网络以及存储等四个资源的平衡。目前常用的并被誉为“最佳”的解决方案是采用相对较低成本的旧有硬件,部署足够多的服务器以应对任何可能的故障,并部署一个完整机架的系统。
Hadoop模式要求服务器与SAN或者NAS进行直接连接存储(DAS)。采用DAS主要有三个原因,在标准化配置的集群中,节点的缩放数以千计,随着存储系统的成本、低延迟性以及存储容量需求不断提高,简单配置和部署个主要的考虑因素。随着极具成本效益的1TB磁盘的普及,可使大型集群的TB级数据存储在DAS之上。这解决了传统方法利用SAN进行部署极其昂贵的困境,如此多的存储将使得Hadoop和数据存储出现一个令人望而却步的起始成本。有相当大一部分用户的Hadoop部署构建都是采用大容量的DAS服务器,其中数据节点大约1-2TB,名称控制节点大约在1-5TB之间,具体如下图所示:
来源:Brad Hedlund, DELL公司
对于大多数的Hadoop部署来说,基础设施的其他影响因素可能还取决于配件,如服务器内置的千兆以太网卡或千兆以太网交换机。上一代的CPU和内存等硬件的选择,可根据符合成本模型的需求,采用匹配数据传输速率要求的千兆以太网接口来构建低成本的解决方案。采用万兆以太网来部署Hadoop也是相当不错的选择。
万兆以太网对Hadoop集群的作用
千兆以太网的性能是制约Hadoop系统整体性能的一个主要因素。使用较大的数据块大小,例如,如果一个节点发生故障(甚至更糟,整个机架宕机),那么整个集群就需要对TB级的数据进行恢复,这就有可能会超过千兆以太网所能提供的网络带宽,进而使得整个集群性能下降。在拥有成千上万个节点的大型集群中,当运行某些需要数据节点之间需要进行中间结果再分配的工作负载时,在系统正常运行过程中,某个千兆以太网设备可能会遭遇网络拥堵。
每一个Hadoop数据节点的目标都必须实现CPU、内存、存储和网络资源的平衡。如果四者之中的任意一个性能相对较差的话,那么系统的潜在处理能力都有可能遭遇瓶颈。添加更多的CPU和内存组建,将影响存储和网络的平衡,如何使Hadoop集群节点在处理数据时更有效率,减少结果,并在Hadoop集群内添加更多的HDFS存储节点。
幸运的是,影响CPU和内存发展的摩尔定律,同样也正影响着存储技术(TB级容量的磁盘)和以太网技术(从千兆向万兆甚至更高)的发展。预先升级系统组件(如多核处理器、每节点5-20TB容量的磁盘,64-128GB内存),万兆以太网卡和交换机等网络组件是重新平衡资源最合理的选择。万兆以太网将在Hadoop集群证明其价值,高水平的网络利用率将带来效益更高的带宽。下图展示了Hadoop集群与万兆以太网的连接:
许多企业级数据中心已经迁移到10GbE网络,以实现服务器整合和服务器虚拟化。随着越来越多企业开始部署Hadoop,他们发现他们完全不必要大批量部署1U的机架服务器,而是部署更少,但性能更高的服务器,以方便扩展每个数据节点所能运行的任务数量。很多企业选择部署2U或4U的服务器(如戴尔 PowerEdge C2100),每个节点大约12-16个核心以及24TB存储容量。在这种环境下的合理选择是充分利用已经部署的10GbE设备和Hadoop集群中的 10GbE网卡。
在日常的IT环境中构建一个简单的Hadoop集群。可以肯定的是,尽管有很多细节需要微调,但其基础是非常简单的。构建一个计算、存储和网络资源平衡的系统,对项目的成功至关重要。对于拥有密集节点的Hadoop集群而言,万兆以太网能够为计算和存储资源扩展提供与之相匹配的能力,且不会导致系统整体性能下降。
❺ 服务器集群怎么实现
不难,硬件用路由器,软件嘛,操作系统用WIN2003
server
enterprise
企业版,推荐一并安装R2升级包,所有机器组局域网,用一台千兆网卡做域控,架设流媒体服务器,其他机做为域成员加入进来,内网IP各用各的,外网用端口映射到一个IP,用域控做网络流量负载平衡,域控机器配置要强,如果你网络流量大,建议用专业级服务器,至强+2Gb+SCSI硬盘之类,看你环境要求了,如果必要可以上双至强,再用一台512mb内存的p4
2.0G以上机做备份域控,这样主域控上下线或重启或出故障不影响域内成员正常工作,备份域控凑合就可以了,按我上面的要求就行,当然,有钱可以用好的
如果你安全性要求高,建议路由前端用普通P4+512Mb内存机器架ISA2004
server组防火墙,配置的好效果比一般的硬件防火墙要好,完全不影响网络环境运行,域内成员可以裸奔不怕毒和黑
至于域内成员机,如果仅全力供应片源,当前主流家用机型就够用了
服务器建议用hp
360G系列,目前价位不算高,性价比还不错,售后很好,如果你对建网不怎么了解,可以让他们帮你装,买他们的服务器就是要利用他们的人力资源嘛
路由器可以选用飞鱼星4200以上机型,电信网通双WAN口,是可以提供150~250台机器的大型网吧专用的,内置参数非常丰富
另外再多罗嗦几句,板卡不要买七彩虹的,我上过当,七彩虹本身是咨讯公司,没有任何板卡生产能力,都是同德代工的,以为它的出货量大,就选了它,结果广告上的指标参数和实际产品根本不同,水份太多太多了,售后也很烂,特此建议……
楼下别再抄袭我了,每天都被抄走好几个200分最佳,实在是郁闷!
❻ 如何构建mysql数据库集群
当提到大数来据,高并发自。大家都会想到分布式,集群。
那么两者都是用来处理大批量数据操作的,其工作原理是有很大区别的,分布式会缩短单个任务的执行时间来提升工作效率,而集群强调的是提高单位时间内执行操作数的增加来提高效率。
更简单的来说,分布式是将步骤分到每台电脑上,不考虑依赖关系。
集群方案是指几个任务同时在处理。
❼ 如何架构大数据系统hadoop
大数据数量庞大,格式多样化。
大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。
它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。
因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。
随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。
这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。
因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。
应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。
数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。
在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。
其中分布式存储与计算受关注度最高。
上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。
大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。
批处理是先存储后处理,而流处理则是直接处理数据。
挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。
大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。
一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。
因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。
其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapRece(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Rece则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。
当处理大数据查询时,MapRece会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。
Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。
Hbase利用MapRece来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查操作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。
由MemStore和StoreFile组成。
HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。
于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。
基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。
丰富的数据源是大数据产业发展的前提。
数据源在不断拓展,越来越多样化。
如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。
对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。
然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
❽ 公司级大数据处理平台的构建需要做哪些准备
按照大数据处理的流程,分为数据采集、数据存储、数据提取、数据挖掘、数据分析,数据展现和应用。以下是链家网的案例,采用Hadoop集群建立BI和报表平台,以及采用业务员自助分析和数据挖掘、数据分析人员借用大数据平台的集群运算能力挖掘数据的双模式业务。
除此之外,更传统的企业对于大数据平台的应用也是基于以上的流程。
引用某大数据平台建设的案例,该机构是国家性研究机构,建立大数据平台主要收集市场数据,出台国家级的研究性报告,用于辅助市场决策。
从建设的及流程开始讲起吧,算是提供一个方法论。
第一步是数据整合,对多源多类型的数据进行整合,实现数据共享。目前以帆软报表FineReport为数据处理工具,以SQLServer为数据库存储平台,整合信息中心常用业务数据,常用的业务数据包括价格、进出口以及平衡表等。
第二步就是数据的抓取、处理激毕和分析并自动化生成系列产品报告,实现目标是解放生产力御盯。把业务人员从采集、整理、处理数据的体力劳动中解放出来,集中精力于市场深度分析研究、模型建立镇铅和。本质上还是数据整合,不同地方是数据自动采集,并依据构建的模型。技术选型:FineReport+FineBI+Python+Kettle(ETL工具)+SQLServer。
第三步是数据挖掘,目标是构建行业模型和行业计量模型实现科学决策。
依托一期、二期整合的数据和大数据,接下来将构建大数据能力,提供标准化的服务能力。但粮油的分析模型、行业积累模型,是一种因素模型、经验模型,一定程度上依赖于分析师对市场的看法,这个模型分析结果需要分析师经验和直觉来判断,技术上要到位,所以这里通过帆软报表FineReport和商业智能FineBI的结果,从数据报表、数据分析、数据挖掘三个层次,把数据转化为信息把数据转化为信息,使得业务人员能够利用这些信息,辅助决策,这就是商业智能主要解决的问题。无论在哪个层次,核心目标就是“把数据转化为信息”。