A. 数据处理技术有哪些
1.HDFS(分布式文件存储系统)
2.MapRece(分布式计算框架)
3.YARN(资源调度器)
4.HBASE(分布式数据库)
B. 数据处理一般包括哪四个过程
数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。
根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。
1.理:梳理业务流程,规划数据资源
对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?
这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。
2.采:ETL采集、去重、脱敏、转换、关联、去除异常值
前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。
3.存:大数据高性能存储及管理
这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。
4.用:即时查询、报表监控、智能分析、模型预测
数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询、分析、监控做铺垫。
这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立、业务问题的分析,甚至是模型的预测。
C. 数据处理方法有哪些
数据处理方法有:
1、标准化:标准化是数据预处理的一种,目的的去除量纲或方差对分析结果的影响。作用:消除样本量纲的影响;消除样本方差的影响。主要用于数据预处理。
2、汇总:汇总是一个经常用于减小数据集大小的任务。汇总是一个经常用于减小数据集大小的任务。执行汇总之前,应该花一些时间来清理数据,尤其要关注缺失值。
3、追加:追加节点将结构类似的表,选取一个主表,将另外的表追加在主表后面(相当于增加行记录)。注意:要追加文件,字段测量级别必须相似。例如,名义字段无法附加测量级别为连续的字段,即字段类型的相同。
4、导出:用户可以修改数据值并从现有数据中派生出新字段。可以根据一个或多个现有字段按6种方式创建出一个或者多个相同的新字段。
5、分区:分区节点用于生成分区字段,将数据分割为单独的子集或样本,以供模型构建的训练、测试和验证阶段使用。通过用某个样本生成模型并用另一个样本对模型进行测试,可以预判此模型对类似于当前数据的大型数据集的拟合优劣。
D. 数据处理一般包括什么、什么、什么、和分析数据等过程。
由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
1、识别需求
确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。
2、收集数据
有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。
策划时应考虑:将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;明确由谁在何时何处,通过何种渠道和方法收集数据;记录表应便于使用;采取有效措施,防止数据丢失和虚假数据对系统的干扰。
3、分析数据
分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图。
4、过程改进
组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:
提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析。
收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;数据分析方法是否合理,是否将风险控制在可接受的范围;数据分析所需资源是否得到保障。
(4)专利数据处理包括哪些扩展阅读
数据处理中,通常计算比较简单,且数据处理业务中的加工计算因业务的不同而不同,需要根据业务的需要来编写应用程序加以解决。
而数据管理则比较复杂,由于可利用的数据呈爆炸性增长,且数据的种类繁杂,从数据管理角度而言,不仅要使用数据,而且要有效地管理数据。因此需要一个通用的、使用方便且高效的管理软件,把数据有效地管理起来。
数据处理与数据管理是相联系的,数据管理技术的优劣将对数据处理的效率产生直接影响。而数据库技术就是针对该需求目标进行研究并发展和完善起来的计算机应用的一个分支。
E. 我想问一下大数据的数据处理包括哪些方面
大数据的数据处理一共包括四个方面分别是收集,存储,变形,和分析。
收集:原始数据种类多样,格式、迅橡位置、存储、时效性等迥异。数据收集从异构数据源中收集数据并转换成相应的格式方便处理。
存储:收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。
变形:原始数据需要变形与增强之喊耐后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。
分析:通过整理好郑昌春的数据分析whathappened、whyithappened、whatishappening和whatwillhappen,帮助企业决策。
更多关于大数据的数据处理包括哪些方面,进入:https://m.abcgonglue.com/ask/49f18f1615839526.html?zd查看更多内容