Ⅰ 数学建模方法和步骤
摘要
摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。
摘要是全文的精华,摘要应当点明:
(1)
模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)
(2)
建模的思想(思路)
(3)
算法思想(求解思路)
(4)
模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)
(5)
主要结果(数值结果,结论)(回答题目所问的全部“问题”)
注意表述一定要准确、简明、通顺、工整,务必认真校对。
1.
问题重述
把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。
2.
模型假设
根据评卷原则,基本假设的合理性占重要比重。
应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。
3.
模型的建立
(1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明
(2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。
(3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。
4.
模型求解
(1)
需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2)
需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。
(3)
计算过程,中间结果可要可不要的,不必列出。
(4)
设法算出合理的数值结果。
5.模型的结果
(1)
最终数值结果的正确性或合理性是第一位的;
(2)
对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因,
对算法、计算方法、或模型进行修正、改进;
(3)
题目中要求回答的问题,数值结果,结论,必须一一列出;
(4)
考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据;
(5)
结果的表示要集中,醒目,直观,便于比较分析
(6)
必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
6.模型评价
(1)说明特色,优点突出,缺点不回避。
(2)改变原题要求,重新建模可在此做。
(3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。
7.参考文献
按规定列出。
8.附录
(1)主要结果数据,应在正文中列出。
(2)数据、表格,可在此列出,但不要错,错的宁可不列。
Ⅱ 论文用数据是什么研究方法
论文用数据是数学方法。
数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。
要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
论文的作用:
1、提高研究者的研究水平
撰写科研论文,不仅是反映科研成果的问题,而且也是个深化科研成果和发展科研成果的问题,在撰写科研论文过程中,对实验研究过程所取得的大量材料进行去粗取精,实现由感性认识向理性认识的飞跃和升华,使研究活动得到深化,使人们的认识得到深化。
2、推动教育科研活动自身不断完善
教育科研活动是个探索未知领域的活动,并无既定模式和途径可循,在一定意义上可以讲,教育科研活动均属创造性活动。为了保证教育科研活动越发卓有成效,为了给进一步开展教育科研活动提供可靠依据,在每一科研活动终端都撰写报告或论文是十分必要的。