导航:首页 > 数据分析 > 数据挖掘如何入门

数据挖掘如何入门

发布时间:2023-08-12 04:20:15

1. 数据挖掘需要哪些学科的基础

需要学习以下四类学科基础。

(1)学习数据挖掘基础:数据库理论、数学基础(包括数理统计、概率、图论等)、熟练掌握一种编程语言(java,python)、会使用数据挖掘工具软件(weka、matlab、spss)。编程基础。
(2)需要掌握一大一小两门语言,大的指C++或者JAVA,小的指python或者shell脚本。
(3)需要掌握基本的数据库语言。数学基础:概率论,数理统计,线性代数,随机过程,最优化理论。数据结构与算法分析基础
(4)掌握常见的数据结构以及操作(线性表,队,列,字符串,树,图等),掌握常见的计算机算法(排序算法,查找算法,动态规划,递归等)。
建议:多敲代码,多刷题。

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程中安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的应用实现,并根据输出的结果分析业务需求,为进行合理、有效的策略优化提供数据支撑;课程涉及大量企业项目案例点击预约免费试听课。

2. 如何学好数据挖掘

很多人都开始关注数据分析,这是因为数据分析行业十分有前景。而学习数据分析需要学习数据挖掘,其中学习数据挖掘需要掌握很多的知识。我们在这篇文章中给大家介绍一下数据分析以及数据挖掘需要学习的知识,希望能够给大家带来帮助。
需要告诉大家的是,我们学习有关数据的知识的时候,一定离不开统计知识的学习,当然Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。这些都是学习数据挖掘的基本功。
而数据挖掘中的朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
可以挖掘的数据类型有很多,具体就是关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。
那么什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
关于数据挖掘需要学习的知识我们就给大家介绍到这里了,相信大家看了这篇文章以后对数据挖掘有了一个新的看法。其实数据挖掘的学习并非一日两日就能够完成,只有我们坚持学习,我们才能够有所收获。

3. 求高手推荐学习数据挖掘的方法以及详细的学习过程。

个人建议如下:
第一阶段:掌握数据挖掘的基本概念和方法。先对数据挖掘有一版个概念的认识权,并掌握基本的算法,如分类算法、聚类算法、协同过滤算法等。
参考书:《数据挖掘概念和技术》(第三版)范明,孟小峰 译著。
第二阶段:掌握大数据时代下的数据挖掘和分布式处理算法。现在已经进入大数据时代,传统的数据挖掘算法已经不适用于
参考书:《大数据:互联网大规模数据挖掘和分布式处理》 王斌 译著。
第三阶段:使用Hadoop进行大数据挖掘。Hadoop里面有一个Mahout组件,几乎包括了所有的数据挖掘算法,包括分类、聚类、关联规则等。
参考书:Hadoop实战(第二版).陆嘉恒 著。
另外,数据挖掘是数据库技术、人工智能技术、机器学习技术、统计学习理论、数据可视化等一系列技术的综合,所以,要想学好数据挖掘,这些技术也得懂的呀。
推荐入门时先看浙江大学王灿老师的数据挖掘课程,网上搜下。
期待与你一起学习数据挖掘,共同揭开数据之美。望采纳。

4. 数据挖掘的入门概念

数据挖掘的入门概念
1 数据挖掘
数据挖掘(Data Mining,简称DM),是指从大量的数据中,挖掘出未知的且有价值的信息和知识的过程。
2 机器学习 与 数据挖掘
与数据挖掘类似的有一个术语叫做”机器学习“,这两个术语在本质上的区别不大,如果在书店分别购买两本讲数据挖掘和机器学习的书籍,书中大部分内容都是互相重复的。具体来说,小的区别如下:
机器学习:更侧重于技术方面和各种算法,一般提到机器学习就会想到语音识别,图像视频识别,机器翻译,无人驾驶等等各种其他的模式识别,甚至于谷歌大脑等AI,这些东西的一个共同点就是极其复杂的算法,所以说机器学习的核心就是各种精妙的算法。
数据挖掘:更偏向于“数据”而非算法,而且包括了很多数据的前期处理,用爬虫爬取数据,然后做数据的清洗,数据的整合,数据有效性检测,数据可视化(画图)等等,最后才是用一些统计的或者机器学习的算法来抽取某些有用的“知识”。前期数据处理的工作比较多。
所以,数据挖掘的范畴要更广泛一些。
3 数据挖掘所覆盖的学科
数据挖掘是一门交叉学科,覆盖了统计学、计算机程序设计、数学与算法、数据库、机器学习、市场营销、数据可视化等领域的理论和实践成果
4 数据挖掘的误区
误区一:算法至上论。认为数据挖据是某些对大量数据操作的算法,这些算法能够自动地发现新的知识。
误区二:技术至上论。认为数据挖据必须需要非常高深的分析技能,需要精通高深的数据挖掘算法,需要熟练程序开发设计。
这两种认知都有一定的偏颇。实际上,数据挖掘本质上是人们处理商业问题的方法,通过适量的数据挖掘来获得有价值的结果,技术在随着大数据时代的来临变得愈发重要,但是最好的数据挖掘工程师往往是那些熟悉和理解业务的人。
5 数据挖掘能解决什么问题
商业上的问题多种多样,例如:
“如何能降低用户流失率?”
“某个用户是否会响应本次营销活动?“
"如何细分现有目标市场?"
“如何制定交叉销售策略以提升销售额?”
“如何预测未来销量?”
从数据挖掘的角度看,都可以转换为五类问题:
分类问题
聚类问题
回归问题
关联分析
推荐系统
5.1 分类问题
简单来说,就是根据已经分好类的一推数据,分析每一类的潜在特征建立分类模型。对于新数据,可以输出新出具属于每一类的概率。
比如主流邮箱都具备的垃圾邮件识别功能:一开始,正常邮件和垃圾邮件都是混合在一起的,如果我们手工去点击哪些是垃圾邮件,逐渐的,垃圾邮件就会自动被识别放到垃圾文件夹。如果我们对于混在正常邮件中的垃圾持续进行判断,系统的识别率就会越来越高。我们人工点击判断,相当于预先分类(两类:垃圾邮件和非垃圾邮件),系统就会自己学习两类邮件的特征建立模式,对于新邮件,会根据模式判断属于每个类别的可能性。

分类算法示意
5.2 聚类问题
和分类算法是不同概念,但是工作中业务人员经常误用。 聚类的的目的也是把数据分类,但类别并不是预先定义的,算法根据“物以类聚”的原则,判断各条数据之间的相似性,相似的就归为一类。
比如我有十万消费者的信息数据,比如包括性别,年龄,收入,消费等,通过聚类的方法事可以把这些数据分成不同的群,理论上每群用户内都是相似性较高的,就可以覆盖分群用户制定不同的策略

聚类算法示意
5.3 回归问题
回归问题和分类问题有点类似,但是回归问题中的因变量是一个数值,而分类问题,最终输出的因变量是一个类别。简单理解,就是定义一个因变量,在定义若干自变量,找到一个数学公式,描述自变量和因变量之间的关系。
比如,我们要研究房价(Y),然后收集房子距离市中心的距离(X1),面积(X2),收集足够多的房子的数据,就可以建立一个房价和距离、面积的方程式(例如Y=aX1+bX2),这样给出一个新的距离和面积数据,就可以预测这个房子的价格。

回归问题示意
5.4 关联分析
关联分析主要就是指”购物篮分析“,很有名气案例是【啤酒与尿布】的故事,”据说“这是一个真实的案例:沃尔玛在分析销售记录时,发现啤酒和尿布经常一起被购买,于是他们调整了货架,把两者放在一起,结果真的提升了啤酒的销量。后来还分析背后的原因,说是因为爸爸在给宝宝买尿布的时候,会顺便给自己买点啤酒……
所以,关联分析就是基于数据识别产品之间潜在的关联,识别有可能频繁发生的模式。
5.5 推荐系统
利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。也就是平时我们在浏览电商网站、视频网站、新闻App中的"猜你喜欢"、“其他人也购买了XXX”等类似的功能。
5.6 数据挖掘的工作流程
数据挖掘的通用流程叫做CRISP-DM(Cross Instry Standard Process-Data Mining)数据挖掘方法论。

CRISP-DM
6.1 商业理解
商业理解阶段主要完成对商业问题的界定,以及对企业内外部资源进行评估与组织,最终确定将企业的商业目标转化为数据挖掘目标,并制定项目的方案
6.2 数据理解
了解企业目前数据现状,提出数据需求,并尽可能多的收集数据。通过初步的数据探索,快速了解数据的质量
6.3 数据准备
在建立数据挖掘模型之前对数据做最后的准备工作,主要是把收集到的各部分数据关联起来,形成一张最终数据宽表。这个阶段其实是耗时最长的阶段,一般会占据整个数据挖掘项目的70%左右的时间,包括数据导入、数据抽取、数据清洗、数据合并、新变量计算等工作。
6.4 模型构建
模型构建是数据挖掘工作的核心阶段。主要包括准备模型的训练集和验证集,选择并使用适当的建模技术和算法,模型建立,模型效果对比等工作
6.5 模型评估
模型评估主要从两个方面进行评价:
1)技术层面:
- 设计对照组进行比较。
- 根据常用的模型评估指标进行评价,如命中率、覆盖率、提升度等
2)业务经验:业务专家凭借业务经验对数据挖掘结果进行评估
6.6 模型部署
将数据挖掘成果程序化,将模型写成存储过程固化到IT平台上,并持续观察模型衰退变化,在发生模型衰退时,引入新的变量进行模型优化。

5. 学习数据挖掘需要那些基础知识

入门推荐你看《机器学习实战》,不需要你跑去学习算法和数据结构,不需要解析几何的知识,但是数理统计的基础你必须要有,期望、方差、常用的几种概率分布,尤其注意一下条件概率,因为朴素贝叶斯模型你一定要懂,线性代数至少你要明白矩阵乘法、行列式计算,再就是微积分知识,不然你看不懂所有基于梯度下降法的文献,行业内用的比较多的是c++,java和python,推荐你用python,很多模型不需要你造轮子,python有相关的第三方模块,很方便。

数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,但实际上这些知识大多是相通的,机器学习实战这本书是我看的启蒙书里很好的一本了,该有的都有,难度较小,有理论有实践,可以较快的对各种知识有个大概的了解,但是想要长期在这个行业发展,还需要学习更多的知识,比如说提到回归模型,你不仅仅要知道最小二乘法,你还要想到怎么进行数据清洗、哪些数据需要清洗,怎么规范数据,数据是否过多,要不要进行归约和降维,采用哪种回归模型,精确度大致要达到什么水平,要不要考虑过拟合和欠拟合,要不要进行交叉验证,几折交叉验证效果好,如果回归模型不适用,有哪些备选方案。比如说决策树模型,书上简单的讲了个if-then就完了,按照什么规则生成树,怎么分层,要不要剪枝,最终的效果怎么样,造成误差的原因是模型太复杂还是太简单,怎么综合其他模型对决策树进行改进,数据的聚类方法用k均值还是DBSCAN,需要对数据进行分类的时候要考虑数据量大不大,SVM还是神经网络,数据量计算机吃不吃得消,一次吃不消该怎么做,等你对这些有了大致的了解之后,好好看看《统计学习方法》这本书,深入地了解一下理论部分,看一看核心部分的数学模型,看一看如何算法实现,着重理解一下拉格朗日微分法和拉格朗日对偶,解决等式约束和不等式约束很有用,这个也是使用智能算法尝试解决NP完全问题的一个结合点。

除了看书以外,其他时间全部用在学习编程上,python常用的numpy、matplotlib、scipy、sklearn、nltk这些包你都要大致了解怎么用,推荐你看看图灵程序设计丛书里的《python学习手册》《python自然语言处理》《python科学计算》,至少要知道怎么定义类、方法、属性,常用模块里有哪些好用的方法,常见的异常怎么排除,其他的在有时间的时候随用随学,至于算法和数据结构,有时间的话看看《算法导论》,肯定有所收获。

至于说书单就上豆瓣搜一搜,评分高的一般都比较靠谱,英文版的也比较靠谱

阅读全文

与数据挖掘如何入门相关的资料

热点内容
编程如何调用tkinter 浏览:512
电气工程的编程主要是什么 浏览:112
word重复标题行单元格边框 浏览:977
易语言官方网站 浏览:622
如何比对行的数据库 浏览:868
c获取文件绝对路径 浏览:739
qq空间头像旁边有个心 浏览:581
rom文件zip格式 浏览:41
linux读取目录下的文件夹 浏览:4
有没有裸体app软件 浏览:249
哪个app可以看好友距离 浏览:75
dbf文件找不到 浏览:174
如何搞word文件 浏览:393
表格多建立数据库 浏览:430
win10文件图标修复工具 浏览:190
苹果手机携程旅游怎么领流量 浏览:721
bestsonny系统升级 浏览:122
限制特定文件类型的是哪个 浏览:874
javaexcel导出2007 浏览:21
linuxcentos7top详解 浏览:245

友情链接