导航:首页 > 数据分析 > 数据方面如何刨析

数据方面如何刨析

发布时间:2023-08-09 23:58:07

『壹』 怎样对数据进行分析—数据分析的六大步骤

        时下的大数据时代与人工智能热潮,相信很多人都会对数据分析产生很多的兴趣,其实数据分析师是Datician的一种,指的是不同行业中,专门从事行业数据收集,整理,分析,并依据数据做出行业研究、评估和预测的专业人员。

        很多人学习过数据分析的知识,但是当真正接触到项目的时候却不知道怎样去分析了,导致这样的原因主要是没有属于自己的分析框架,没有一个合理的分析步骤。那么数据分析的步骤是什么呢?比较让大众认可的数据分析步骤分为

六大步骤。只有我们有合理的分析框架时,面对一个数据分析的项目就不会无从下手了。

        无论做什么事情,首先我们做的时明确目的,数据分析也不例外。在我们进行一个数据分析的项目时,首先我们要思考一下为什么要进展这个项目,进行数据分析要解决什么问题,只有明确数据分析的目的,才不会走错方向,否则得到的数据就没有什么指导意义。

        明确好数据分析目的,梳理分析思路,并搭建分析框架,把分析目的分解成若干不同的分析要点,即如何具体开展数据分析,需要从那几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑化,确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析的目的。

        数据收集的按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。常见的数据收集方式主要有以下几种

        一般地我们收集过来的数据都是杂乱无章的,没有什么规律可言的,所以就需要对采集到的数据进行加工处理,形成合适的数据样式,保证数据的一致性和有效性。一般在工作中数据处理会占用我们大部分的时间

        数据处理的基本目的是从大量的,杂乱无章的数据中抽取到对接下来数据分析有用的数据形式。常见的数据处理方式有 数据清洗、数据分组、数据检索、数据抽取 等,使用的工具有 Excel、SQL、Python、R 语言等。

        对数据整理完毕之后,就需要对数据进行综合的分析。数据分析方式主要是使用适当的分析方法和工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。

        在确定数据分析思路的阶段,就需要对公司业务、产品和分析工具、模型等都有一定的了解,这样才能更好地驾驭数据,从容地进行分析和研究,常见的分析工具有 SPSS、SAS、Python、R语言 等,分析模型有 回归、分类、聚类、关联、预测 等。其实数据分析的重点不是采用什么分析工具和模型而是找到合适的分析工具和模型,从中发现数据中含有的规律。

        通过对数据的收集、整理、分析之后,隐藏的数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,是通过表格和图形的方式来呈现出来。多数情况下,人们通常愿意接受图形这样数据展现方式,因为它能更加有效、直观地传递出数据所要表达的观点。

        常用数据图表 有饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图、矩阵图 等图形,在使用图形展现的情况下需要注意一下几点:

        当分析出来最终的结果之后,我们是知道这部分数据展现出来的意义,适用的场景。但是如果想让更多人了解你分析出来的东西,让你的分析成果为众人所熟知,这时就需要一份完美的PPT报告,一个逻辑合理的故事。这样的分析结果才是最完美的。

        一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象,直观地看清楚问题和结论,从而产生思考。

                                                           数据分析的四大误区

1、分析目的不明确,不能为了分析而分析 。只有明确目的才能更好的分析

2、缺乏对行业、公司业务的认知,分析结果偏离实际 。数据必须和业务结合才有意义,清楚所在行业的整体结构,对行业的上游和下游的经营情况有大致的了解,在根据业务当前的需要,制定发展计划,归类出需要整理的数据,同时,熟悉业务才能看到数据背后隐藏的信息。

3、为了方法而方法,为了工具而工具 。只要能解决问题的方法和工具就是好的方法和工具

4、数据本身是客观的,但被解读出来的数据是主观的 。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析

『贰』 数据分析方法有哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

『叁』 如何进行数据分析

很多人在进行数据分析的时候总是会有些迷惑,那就是不知道怎么去进行数据分析或者数据分析到底要何处下手,其实这个问题的症结就是对数据分析没有一个明确思路。在进行数据分析的时候,我们可以制定一个计划,就能够知道自己在各个阶段该如何做好数据分析工作。简单来说,可以总结为五个步骤,这五个步骤分别是确定分析目的和要分析的数据,分析源数据,处理源数据,得出结论,想出优化方案。做好了这些工作,才能够做好数据分析。
首先说说确定分析目的和要分析的数据。我们肯定能意识到,数据分析中最关键的一个步骤,只有确定了步骤,才能够知道自己分析收据的意义。确定数据的重要性在于选择要分析的数据是否有逻辑性,如果没有逻辑性,那么数据分析出来的结果是错误的。并且,实际情况往往非常复杂,需要业务的实际情况去选定要分析哪些数据同样可能决定分析结论。如果选错了样本,那分析结论就很大概率不正确。
第二说说观察源数据。很多人拿到数据就开始处理、分析,其实这样做并不妥,拿到数据的第一步应该是对数据做一个初步的判断,如果经过一顿分析发现数据有很基础的错误,会对自己以后的分析没有自信的。异常数据是在这一步中要重点留意的,有一些数据有较为突出的波动。对于这样的数据要探究它产生的原因,没别的,还是要结合业务、结合自己的运营动作去想是否合理。
然后说说处理源数据。处理数据的话就是会使用数据分析的工具,一般来说Excel是够用的。同时结合个人经验说下,在用工具处理的时候,真的很可能出现操作错误,所以你要时刻提醒着点自己保持大脑运转,要对数据的合理性不断地质疑。由此可见数据分析的工具是需要大家多多学习的。
接着说说得出结论。得出结论这个步骤最容易用主观视角去分析,带着错误的思想方式去分析数据也能够分析的出,所以数据分析一定要从客观的角度进行分析,另外,同样的数据不同的人分析,得出结论可能不同,差异就在于你们掌握、考虑的信息量可能不一样,数据分析时尽可能让自己敏感、细致,尽可能多地了解一切其他变量。
最后就是想出优化方案得出结论也不是数据最终的目的,需要大家不断的发现问题,同时想出解决方案,得到反馈之后还要再发现问题,这才是正确的循环。
以上的内容就是对于数据分析工作的步骤了。数据分析工作的步骤就是确定分析目的和要分析的数据,分析源数据,处理源数据,得出结论,想出优化方案。这样才能够更好的进行数据分析工作,希望这篇文章能够给大家带来帮助。

『肆』 怎样进行数据分析

进行数据分析方式如下:

1、要求明确:准确

明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。

在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。

2、确定思路:全面、深入

分析思想是分析的灵魂,是细化分析工作的过程。分析思路清晰有逻辑,能有效避免反复分析问题。从分析目的出发,全面、深入地拆解分析维度,确定分析方法,最终形成完整的分析框架。

3、处理数据:高效

当我们进行数据分析时,我们可能会得到混乱的数据,这就要求我们清洁、整理、快速、准确地加工成适合数据分析的风格。

此时需要使用数据分析软件以工作流的形式提取数据模型的语义,通过易于操作的可视化工具将数据加工成具有语义一致性和完整性的数据模型。系统支持的数据预处理方法包括:采样、拆分、过滤和映射、列选择、空值处理、并行、合并行、元数据编辑、JOIN、行选择、重复值去除等。

4、数据分析:合适的数据

分析数据在分析过程中的地位是首要任务。从分析的目的出发,运用适当的分析方法或模型,使用分析工具分析处理过的数据,提取有价值的信息。

5、显示数据:直观

展示数据又称数据可视化,是以简单直观的方式传达数据中包含的信息,增强数据的可读性,让读者轻松看到数据表达的内容。

6、写报告:建议落地,逻辑清晰

撰写报告是指以文件的形式输出分析结果,其内容是通过全面科学的数据分析来显示操作,可以为决策者提供强有力的决策依据,从而降低操作风险,提高利润。

在撰写报告时,为了使报告更容易阅读和有价值,需要注意在报告中注明分析目标、口径和数据来源;报告应图文并茂,组织清晰,逻辑性强,单一推理;报告应反映有价值的结论和建议。

7、效果反馈:及时

所谓效果反馈,就是选择合适有代表性的指标,及时监控报告中提出的战略执行进度和执行效果。只有输入和输出才能知道自己的操作问题点和闪点,所以效果反馈是非常必要的。反馈时要特别注意两点,一是指标要合适,二是反馈要及时。

『伍』 如何对数据进行分析 大数据分析方法整理

【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,今天小编就来和大家说说如何对数据进行分析?为此小编对大数据分析方法进行的归纳整理,一起来看看吧!

画像分群

画像分群是聚合契合某种特定行为的用户,进行特定的优化和剖析。

比方在考虑注册转化率的时候,需求差异移动端和Web端,以及美国用户和我国用户等不同场景。这样可以在途径战略和运营战略上,有针对性地进行优化。

趋势维度

树立趋势图表可以活络了解商场,用户或产品特征的根柢体现,便于进行活络迭代;还可以把方针依据不同维度进行切分,定位优化点,有助于挑选方案的实时性。

趋势维度

漏斗查询

经过漏斗剖析可以从先到后的次序恢复某一用户的途径,剖析每一个转化节点的转化数据。

悉数互联网产品、数据分析都离不开漏斗,不论是注册转化漏斗,仍是电商下单的漏斗,需求注重的有两点。首先是注重哪一步丢掉最多,第二是注重丢掉的人都有哪些行为。

注重注册流程的每一进程,可以有用定位高损耗节点。

漏斗查询

行为轨道

行为轨道是进行全量用户行为的恢复,只看PV、UV这类数据,无法全面了解用户怎样运用你的产品。了解用户的行为轨道,有助于运营团队注重具体的用户领会,发现具体问题,依据用户运用习气规划产品、投进内容。

行为轨道

留存剖析

留存是了解行为或行为组与回访之间的相关,留存老用户的本钱要远远低于获取新用户,所以剖析中的留存是十分重要的方针之一。

除了需求注重全体用户的留存情况之外,商场团队可以注重各个途径获取用户的留存度,或各类内容招引来的注册用户回访率,产品团队注重每一个新功用用户的回访影响等。

留存剖析

A/B查验

A/B查验是比照不同产品规划/算法对效果的影响。

产品在上线进程中常常会运用A/B查验来查验产品效果,商场可以经过A/B查验来完毕不同构思的查验。

要进行A/B查验有两个必备要素:

1)有满意的时刻进行查验

2)数据量和数据密度较高

由于当产品流量不行大的时候,做A/B查验得到核算经果是很难的。

A/B查验

优化建模

当一个商业方针与多种行为、画像等信息有相关时,咱们一般会运用数据挖掘的办法进行建模,猜测该商业效果的产生。

优化建模

例如:作为一家SaaS企业,当咱们需求猜测判别客户的付费自愿时,可以经过用户的行为数据,公司信息,用户画像等数据树立付费温度模型。用更科学的办法进行一些组合和权重,得知用户满意哪些行为之后,付费的或许性会更高。

以上就是小编今天给大家整理分享关于“如何对数据进行分析
大数据分析方法整理”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。

『陆』 如何进行有效的数据分析

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;

什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。

专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。

那么,我们做数据 分析的目的是什么呢?

事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。

数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析

工作中我们运用数据分析的作用有哪些?

1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等

2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题

3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。

最重要的一点:

我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?

然后,我们来看数据分析的六部曲

1、明确分析目的和思路:

这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。

2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。

3、数据处理:

主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。

4、数据分析:

首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。

5、数据展现:

数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点

6、撰写报告:

数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

『柒』 如何做好数据分析

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

『捌』 怎样对数据进行分析

数据分析方法:

1、对比分析法

对比分析法是通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。

2、分组分析法

分组分析法是根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。

所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。

3、预测分析法

预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。

预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。

比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。

使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。

5、AB测试分析法

AB测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。

例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

阅读全文

与数据方面如何刨析相关的资料

热点内容
怎么创建图标文件 浏览:301
jsp页面截取字符串 浏览:668
压缩文件传电脑打不开 浏览:34
如何弄个自己的app 浏览:361
如何在银行app中改密码 浏览:316
什么app拍视频又瘦又高 浏览:979
编程语言foo是什么意思 浏览:826
如何不用APP连接斐讯手环 浏览:698
王菲版本的无地自容 浏览:489
编程如何调用tkinter 浏览:512
电气工程的编程主要是什么 浏览:112
word重复标题行单元格边框 浏览:977
易语言官方网站 浏览:622
如何比对行的数据库 浏览:868
c获取文件绝对路径 浏览:739
qq空间头像旁边有个心 浏览:581
rom文件zip格式 浏览:41
linux读取目录下的文件夹 浏览:4
有没有裸体app软件 浏览:249
哪个app可以看好友距离 浏览:75

友情链接