⑴ 数据新闻的功能与优势
目前,在大数据新闻制作上已经积累了经验的国际媒体有《卫报》《纽约时报》《华盛顿邮报》等,但它们也处于探索阶段。通过对国内外代表性媒体的大数据新闻实践进行研究,可以总结出大数据新闻的四个功能,即描述、判断、预测、信息定制。
《卫报》网页2012年1月5日发布了一个有关“阿拉伯之春”的大数据新闻报道。报道利用动态图表,以时间轴为主线描述了自2010年12月一突尼斯男子自焚至2011年12月的一年间,17个阿拉伯国家发生的一场政治运动。网民可以通过这个四维动态的报道,清楚地从宏观到微观,全面了解阿拉伯之春在不同国家的不同表现形式。图表上方设置了时间的推拉按钮,网民推拉到自己想观看的时间点,可以清楚地看到相同时间点上不同国家发生的相关事件。画面的下方是各个国家的标签,网民也可以通过国家标记,来关注某个具体国家在纵向时间轴上的政治演变进程。不同的政治事件用不同颜色来标示:绿色为群众性抗议活动,浅蓝色为国际上的相关反应,黄色为政治事件,红色为政权更替。如果网民想了解某个事件的具体内容,点击不同颜色的标示,随即获取深度报道的链接。这种新闻报道方式,将涉及十几个国家、时间跨度长达一年的复杂的“阿拉伯之春”,以明晰的动态方式呈现出来,纯文字报道难以达到这样的传播效果。
大数据新闻还能够描述那些看不见的短期过程,比如流言如何在社交网络上传播。《卫报》通过追踪分析260万份推特内容,利用可视化动态图表描述了从流言开始传播到辟谣结束的整个过程。它也是以时间为轴,利用圆圈大小、颜色变化来描述整个过程,绿色的圈代表散布流言的推文,红色的圈代表更正这个流言的推文,灰色的是中立的评价推文,黄色的是对流言持怀疑态度的推文。圈的大小代表了推文的影响程度,圈越大影响程度越大。如果想了解具体的内容,点到哪个圈,屏幕旁边即刻呈现这个圈所代表的推文的发布者、发布日期、转推人数等等信息。通过这个动态的演进过程,人们可以清楚地看到,社交网络并不像一般想象的那样,是一味扩散虚假消息的场所。其实在假消息出现不久,社交网络上各种辟谣的消息就已经出现了。
从这两个例子可以看出,大数据新闻的报道方式能够在宏观上对某个事件看得更加清楚与全面,事件复杂的演进过程以及这个过程中的各个方面,都能描述得直观且有趣。 2011年8月,一个黑人穆斯林男子乘出租车在伦敦街头遭到警方拦截,双方发生枪战,该男子当街死亡。两天后,约300人聚集在伦敦市中心的警察局进行抗议,后来演变成持续多天的骚乱事件,抗议者引燃了汽车、商店和公交车。当天夜里,伦敦其他地区也发生了类似袭警、抢劫、纵火等事件。一些媒体评论指出,这与贫富差距有关。英国首相卡梅伦接受采访时,声称骚乱事件与贫富差距无关。
英国《卫报》记者利用大数据的分析结果,做了关于这一事件的系列报道,其中的一个报道主题,便是骚乱与贫困有没有关联。记者利用谷歌融合图表,在伦敦地区地图上标记出骚乱分子的居住地信息(黄色点)、实际发生骚乱的地点(灰色点),以及贫困地区分布(越偏红色表示越贫穷)。根据这张伦敦市中心的图,网民可以将图扩展到整个大伦敦地区来看,也可以聚焦到具体的街区放大来看,观察每个被标记的骚乱点的人流从哪里来,到哪儿去,从而清楚地看到贫苦与骚乱之间存在的某种关联。这种关系的表达,比起单纯的文字报道来,表现清晰,说服力强。 2013年“十一”长假期间,九寨沟发生游客大量滞留现象并引发群体性事件。如果新闻媒体或旅游当局能够在此前运用中国的局部大数据进行预测性报道,完全可以避免这样的群体性事件发生。因为传媒可以根据这方面的大数据,提前报道在哪个具体时间段内,有多少人从哪些地方前往九寨沟,其中男人、女人、老人、儿童各有多少等等。
这只是一个小例子,大数据能够预测社会和人们日常生活中的各个方面。通过挖掘大数据,传媒在技术上可以制作出可视化、交互式的图表,告知很多事项。微观的如流行疾病来袭、交通拥堵情况;宏观的如经济指数变动、某种社会危机的来临等等。网络开辟了“网络预测”网页,以“大数据,知天下”的口号推出,预测的产品有高考、世界杯、电影票房等等。它们后期准备上线的产品扩展到了更广的领域,比如金融预测、房地产预测等等。 利用大数据的分析结果,满足网民的信息个性化要求,是国外媒体的最新尝试。例如Five thirty eight数据博客,在2014年5月23日新辟读者来信专栏“亲爱的莫娜”。其第一期开篇语阐释的目的是:“我开这个专栏是为了帮助读者回答一些生活中重要的或者严肃的问题,比如我是不是很正常、我处在世界的哪个地位层面等等,目的不是为了给读者答疑解惑,不是告诉读者应该做什么和不应该做什么。恰恰相反,我提供数据来解释、描述你的经历。”
综观这个专栏,读者的提问五花八门,比较严肃的如:“美国有多少人从来没有喝过一滴酒?”“美国有多少男性空乘人员?”也有比较私人的如:“我该多久换一次袜子?”“婚前同居会不会导致离婚”等等。专栏作者利用美国范围内的大数据,即刻将分析结果告知当事人,但避免给出指导性意见,仅告知各种数据的分析结果,让网民自己依照分析结果来处理自己面临的问题。这个专栏与传统的纸媒读者来信专栏不同,不是通过星座、血型、生辰八字或伪装成阅历丰富的专家,来提供些心灵鸡汤式的回答,只用数据来说话。
这种尝试在媒体中并不少见。2011年,BBC广播公司曾根据2012年政府的财政预算联合毕马威会计师事务所做了一个预算计算器,用户只需要输入一些日常信息,例如买多少啤酒,用多少汽油等,就能够算出新的预算会让你付多少税,明年生活会不会更好。
根据用户需求提供个性化的大数据服务,是未来的发展趋势。这些报道有一个共性,媒体都致力于以用户的需求为中心,利用大数据诠释宏观社会现象对用户的影响,或者回答用户困惑的问题。媒体可以精准定位,经过后台计算,按照用户的接收习惯、工作习惯和生活习惯将服务推送到用户眼前。
⑵ 什么是大数据,它对新闻业有什么影响
什么是大数据,它对新闻业有什么影响?
答:(1)大数据及其特点
“大数据”(Big Data,Massive Datasets)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据具有4V特征,即海量的数据规模(volume)、快速的数据流转(velocity)、多样的数据类型(variety)和价值密度低(value)四大特征。
在互联网行业中,大数据是指互联网公司在日常运营中生成、累积的用户网络行为数据。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。目前,大数据技术已广泛应用于电子商务、O2O、物流配送等领域,对新闻生产也产生了一定的影响。
(2)大数据对新闻报道的帮助
①提升新闻报道的质量。由于大数据能够精准地检测出确切的数据信息,不仅检测范围广大,而且能够呈现整体的事实并预测事件的发展趋势。因此利用大数据技术,可以有效地检测出媒体的报道方式和报道成果是否有缺陷。另外,新闻工作者可以借助计算机网络技术,利用新闻媒体以及合作机构数据库来挖掘大量的数据信息,进行深层次的数据挖掘,有了这样的技术,媒体的新闻报道水准将得到有效的提升。
②准确预测新闻报道走向。未来新闻业务层面的一个发展方向是趋势预测性新闻,以往新闻报道的选题更多来源于正在发生或已经发生的事实,如果媒体能够广泛借助大数据技术来进行重大趋势的预测与分析,那么,它对 社会 的影响力就能得到提升。
③减轻新闻报道工作人员的工作量。大数据技术的灵活运用,催生了数据新闻和机器人写作。数据新闻是将数据转化为信息的一种新闻生产形式,表现形式以数据和图表为主,这不仅大大增强了新闻报道的真实性、准确性和可说服性,还缓解了新闻报道人员的工作压力。机器人写作则是通过计算机对数据进行分析,按照新闻结构来对数据进行整理和自动撰写,平均每分钟就能够生产出两条新闻报道,这也为新闻报道撰稿人员分担了不少的工作量。
④使新闻报道更能满足受众需求。一方面,新闻生产者和发布者通过对受众的新闻阅读行为进行大数据分析,可以找出影响受众的各方面因素,使新闻报道的受众定位更加准确;另一方面,大数据技术不仅对受众的行为进行普遍化分析,而且还强调受众的个性化特征,从而促使媒体机构为受众提供更加个性化的新闻报道和服务。
⑶ 如何运用好大数据
1、获取全网用户数据
仅有企业数据,即使规模再大,也只是孤岛数据。还要互联网数据统合,才能准确掌握用户站内站外的全方位的行为,使得数据在营销中体现应有的价值。
2、让数据看的懂
采集来的原始数据难以读懂,因此还需要进行集中化、结构化、标准化处理,让“天书”转变为看得懂的信息。
3、分析用户特征及偏好
将第方标签与第三方那个标签相结合,按不同的评估唯独和模型算法,通过聚类方式将具有相同特征的用户化成不同属性的用户族群,对用户的静态信息、动态信心、实时信息分别描述,形成网站用户分群画像系统。
4、制定渠道和创意策略
根据目标群体的特征和分析结果,在计划实施前,对投放策略进行评估和优化。如宣和更适合的用户群体,匹配适当的媒体,制定性价比及效率更好的渠道组合,根据用户特征制定内容策略,从而提升用户人群的转化率。
⑷ 大数据新闻是指在报道中采用什么量级的数据作为分析的数据新闻
1、新闻生产由先前的新闻专业人员延伸到大数据技术人员,采访写作可以通过数据的内采集和分析来完成。容
2、技术对新闻的影响越来越大。
3、新闻报道的准确性和科学性将大为提高。
4、新闻的呈现将发生大的变化。数据的可视化是其主要表现。
5、大数据下的受众分析的深度、广度、精确度,将更有助于提升媒介新闻质量。
个人观点,仅供参考。
⑸ 新媒体方面如何能做好数据分析和统计呢
一直以来,互联网形势都是变幻莫测,四处充满了可变性,随着移动时代的到来,老一套的传统营销方式也可能阻挡企业发展。企业如果再不主动涉及新媒体营销、以及做好大数据统计、融入新时代潮流,可能将遭遇始料不及的困境。
那么企业该如何将掌控的数据信息变为自己所用呢?通常可以运用大数据来洞悉消费者的行为变化,从而精准地分析用户的特点和喜好,最后挖掘出产品的潜在性,以及潜在使用价值用户人群,最终完成销售市场营销的精准化、场景化,这样一个完整的体系就建成了!关于大数据统计,亿仁网络认为企业首先需要做的是依据用户社会属性、消费者行为、生活方式等信息,抽象性地总结出一个标签化的用户画像,这其中就包括用户的性别、地区、年纪、文化教育水准,以及用户的兴趣爱好、知名品牌喜好、产品喜好。
接着,企业就要依靠大数据来进行数据分析,这样可以让你致力于一部分用户,而这群用户就能意味着特殊产品的大部分潜在顾客。最后,采集大数据最大的使用价值并不是事后分析,而是进行事前预测分析和推荐。通过大数据整合更改企业的营销方法,然后依靠顾客的个人行为数据信息去做推荐,这样才能做好!
⑹ 大数据时代,如何全面做好大数据网络舆情引导与分析
关于大数据时代网络舆情引导与分析方法如下:
一、通过相关样本库,把需要监测的网页进行模板匹配,并设定为监测数据源;
二、应用 爬虫程序抓取数据,存储到本地,再进行数据的净化和简略的分析;
三、利用简单的图表模板和文字描述,呈现监测和分析的结果。早期的网络舆情引导监测方式有一些原生的问题,譬如:一、由于处理能力有限,只能抽取部分样本进行监测,无法避免偶然误差;二、文本分析算法的准确度、 监测对象和系统模板匹配的程度、对数据的净化,以及分析的算法等因素对于最后监测结果的准确度都有决定性的影响,无法避免系统误差;
四、舆情引导与分析主体应学会充分利用大数据挖掘系统,蚁坊软件方面的大数据舆情监测管理系统,实现了从网络舆情信息的采集与提取,到话题的发现与追踪、态度倾向性分析,再到多文档自动摘要的生成,为网络舆情的安全评估提供了有效的舆情信息获取和分析方法。不过,由于“舆情”本身具有“社会”特性,数字和代码等信息背后的实体是生存在现实社会中的芸芸众生。除了纯技术角度对舆情进行量化考察,传统的社会民意调查方式对实现全面、立体、动态透析社会综合舆情亦有一定帮助。
数据分析—数据的核心是发现价值,而驾驭数据的核心是分析,分析是大数据实践研究的最关键环节,尤其对于传统难以应对的非结构化数据。运营商利用自身在运营网络平台的优势,发展大数据在网络优化中的应用,可提高运营商在企业和个人用户中的影响力。
⑺ 在小程序开发中如何基于大数据实现新闻推送
在小程序开发中基于大数据实现新闻推送的方法:
1、在公众平台开通消息推送功能,并添加消息模板。
2、从模板库选择模板也可以创建一个模板,模板添加之后,模板id是接下来要用的。
3、在需要触发消息推送的页面添加提交表单的事件。目的是得到formID,formID是消息推送时必须的参数。
4、配置消息模板参数,并传给后台。
5、推送消息即可。
⑻ 数据新闻的解决对策
数据新闻学是一门交叉的学科,数据新闻的产生给传统的新闻工作者提出了挑战,传统的新闻创作理念和方式,要求新闻工作者具备采写编评等基本专业技能,但目前已无法满足大数据时代下数据新闻的创作。因此,对于当前的新闻工作者应具备以下媒体素养:
a.熟练运用计算机能力。在如今信息爆炸的时代,互联网的地位不容忽视。互联网时代,尤其是社交网络、电子商务与移动通信把人类社会带入了一个以“PB”(1024TB)为单位的结构与非结构数据信息的新时代。大量的数据和信息摆在新闻工作者面前,传统的计算机无法处理大量的、无规律的数据,需要云计算进行分析、处理、统计,因此,对于当今的新闻工作者提出了更高的要求,必须熟练运用计算机,以便处理大量的数据和信息。
b.分析处理数据能力。数据新闻与传统的文字图片新闻不一样,数据新闻需要大量的数据,新闻工作者可以通过数据发现问题、提出问题,也可以先有了问题之后,再去收集相关的数据。而拥有大量数据后,必须对其进行分析和处理,将不需要或不相关的数据过滤掉,剩下有价值的数据加以分析整合,供新闻编辑使用。德勤在美国华盛顿特区的研发创新团队招聘数据记者,其中最重要的要求就是要具备分析数据的能力,由此可见,数据新闻记者必须具备较强的数据分析和处理的能力,才能胜任此工作。
c.可视化平面设计能力。数据新闻的可视化表达为新闻行业注入了一股新鲜的血液,让数据新闻充满希望与活力。数据新闻的可视化图片将不同的时间和空间联系在一起,将繁杂的数据简单化,便于受众理解,更有利于受众参与其中,满足不同受众的各方面需求。数据新闻的可视化是其一大特点,因此对于新闻工作者来说,应熟练掌握可视化技术,学会识图制图以及各种表格的制作。