㈠ 数据分析师需要学那些东西
数据分析师需要学习以下几个方面的课程:
(1)数据管理。
a、数据获取。
企业需求:数据库访问、外部数据文件读入
案例分析:使用产品信息文件演示spss的数据读入共能。
b、数据管理。
企业需求:对大型数据进行编码、清理、转换。
案例分析:使用银行信用违约信息文件spss相应过程。
1)数据的选择、合并与拆分、检查异常值。
2)新变量生成,SPSS函数。
3)使用SPSS变换数据结构——转置和重组。
4)常用的描述性统计分析功能。频率过程、描述过程、探索过程。
c、数据探索和报表呈现。
企业需求:对企业级数据进行探索,主要涉及图形的使用。spss报表输出。
案例分析:企业绩效文件,如何生成美观清晰的报告。
1)制作报表前对变量的检查
2)制作报表的中对不同类型的数据处理
3) 报表生成功能与其他选项的区别
(2)数据处理
a、相关与差异分析。
案例分析:产品合格率的相关与差异分析。
b、线性预测。
企业需求: 探索影响企业效率的因素,并进一步预测企业效率。
案例分析:产品合格率的影响因素及其预测分析。
c、因子分析。
企业需求: 需要抽取影响企业效率的主要因素,进行重点投资
案例分析:客户购买力信息研究。
d、聚类分析。
企业需求: 需要了解购买产品的客户信息
案例分析:客户购买力信息研究
e、bootstrap。
案例分析: bootstrap抽样。
(3)SPSS代码
SPSS代码应用
㈡ 数据分析师怎么学
首先你要知道成为一名数据分析师所需要具备的技能:
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
㈢ 数据分析师需要学什么
数据分析师要学习以下几点:
一、统计学
对于互联网的数据分析来说,并不需要掌握太复杂的统计理论。所以只要按照本科教材,学一下统计学就够了。
二、编程能力
学会一门编程语言,会让处理数据的效率大大提升。如果只会在 Excel 上复制粘贴,动手能力是不可能快的。
三、数据库
数据分析师经常和数据库打交道,不掌握数据库的使用可不行。学会如何建表和使用 SQL 语言进行数据处理,可以说是必不可少的技能。
四、数据仓库
许多人分不清楚数据库和数据仓库的差异,简单来说,数据仓库记录了所有历史数据,专门设计为方便数据分析人员高效使用的。
五、数据分析方法
对于互联网数据分析人员来说,可以看一下《精益创业》和《精益数据分析》,掌握常用的数据分析方法,然后再根据自己公司的产品调整,灵活组合。
六、数据分析工具
SAS、Matlab、SPSS 这些工具经常有人推荐。
关于数据分析师的学习可以到CDA认证机构咨询一下,CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。
㈣ 数据分析师入门需要学什么
1、懂业务
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析
指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具
指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计
懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
㈤ 如何学习成为一名数据分析师
想要成为一名数据分析师就要通过不断的努力学习,学习大数据的方法有三种方式供你选择:一种是自学,当然你要有些基础还要有不错的学习能力及自制力。一种是报班学习,这个是学的最快的但是需要教学费。还有一种是线上学习,这个需要找到不错的视频教程,你想学的话可以看看扣丁学堂的教程。以上三种供你选择,祝你好运。
㈥ 如何自学成为数据分析师
数据分析师的基本工作流程:
1.定义问题
确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。
2.数据获取
数据获取的方式有很多种:
一是直接从企业数据库调取,需要SQL技能去完成数据提取等的数据库管理工作。
二是获取公开数据,政府、企业、统计局等机构有。
三是通过Python编写网页爬虫。
3.数据预处理
对残缺、重复等异常数据进行清洗。
4.数据分析与建模
这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。
5.数据可视化和分析报告撰写
学习一款可视化工具,将数据通过可视化最直观的展现出来。
数据分析入门需要掌握的技能有:
1. SQL(数据库):
怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
2. excel
分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。
熟练excel常用公式,学会做数据透视表,什么数据画什么图等。
3.Python或者R的基础:
必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
4.学习一个可视化工具
如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。