⑴ 关于大数据你不可不知的大企业及大布局
关于大数据你不可不知的大企业及大布局_数据分析师考试
如果说有一家科技公司准确定义了“大数据”概念的话,那一定是谷歌。根据搜索研究公司康姆斯科(Comscore)的调查,仅2012年3月一个月的时间,谷歌处理的搜索词条数量就高达122亿条。
谷歌不仅存储了它的搜索结果中出现的网络连接,还会储存所有人搜索关键词的行为,它能够精准地记录下人们进行搜索行为的时间、内容和方式。这些数据能够让谷歌优化广告排序,并将搜索流量转化为盈利模式。谷歌不仅能追踪人们的搜索行为,而且还能够预测出搜索者下一步将要做什么。换言之,谷歌能在你意识到自己要找什么之前预测出你的意图。这种抓取、存储并对海量人机数据进行分析,然后据此进行预测的能力,就是所谓的“大数据”。
2012:大数据十字路口?
为什么大数据突然变得这么火?为什么《纽约时报》把2012年定义为“大数据的十字路口”?
大数据之所以进入主流大众的视野,源自三种趋势的合力:
第一,许多高端消费品公司加强了对大数据的应用。社交网络巨擎 Facebook 使用大数据来追踪用户在其网络的行为,通过识别你在它的网络中的好友,从而给出新的好友推荐建议,用户拥有越多的好友,他们与 Facebook之间的黏度就越高。更多的好友意味着用户会分享更多照片、发布更多状态更新、玩更多的游戏。
商业网站LinkdIn则使用大数据在求职者和招聘职位之间建立关联。有了LinkdIn,猎头们再也不用向潜在的受聘者打陌生电话来碰运气,而可以通过简单的搜索找出潜在受聘者并联系他们。与此相似,求职者也可以通过联系网站上其他人,自然而然地将自己推销给潜在的雇主。
第二,以上两家公司都在2012年早些时候陆续上市。Facebook 在纳斯达克上市,LinkedIn 在纽约证券交易所上市。这两家企业和谷歌一样,虽然表面上是消费品公司,然而其本质是大数据企业。除去这两家,Splunk 也在 2012 年完成了上市,它是一家帮助大中型企业提供运营智能的大数据企业。这些企业的公开上市提高了华尔街对于大数据的兴趣。这种兴趣带来了空前的盛况——硅谷的风险投资家们开始前仆后继地投资大数据企业。大数据将引发下一波创业大潮,而这次浪潮有望让硅谷在未来几年取代华尔街。
第三,亚马逊、Facebook、LinkedIn 和其他以数据为核心消费品的活跃用户们,开始期待自己在工作中也能获得畅通无阻地使用大数据的体验,而不再仅仅限于生活娱乐。用户们此前一直想不通,既然互联网零售商亚马逊可以推荐阅读书目、推荐电影、推荐可供购买的产品,为什么他们所在的企业却做不到类似的事情。
比如,既然汽车租赁公司拥有客户过去租车的信息和现有可用车辆库存的信息,这些公司为何就不能在向不同的租车人提供合适的车辆方面做得更智能一点?公司还可以通过新的技术,将公开信息利用起来——比如某个特定市场的状况,会议活动信息,以及其他可能会影响市场需求和供给的事件。通过将内部供应链数据和外部市场数据结合在一起,公司就可以更加精确地预测什么车辆可用,以及可用时间。
与此类似,零售商应当可以将来自外部的公开数据和内部数据结合在一起,利用这种混合的数据进行产品定价和市场布局。同时还可以同时考虑影响现货供应能力的多种因素以及消费者购物习惯,包括哪两种产品相搭配会卖得更好,这样零售商就可以提升消费者的平均购买量,从而获得更高的利润。
谷歌的行动
谷歌的体量和规模,使它拥有比其他大多数企业更多的应用大数据的途径。谷歌的优势之一在于,它拥有一支软件工程师部队,这使得谷歌能够从无到有地建立大数据技术。
谷歌的另一个优势在于它所拥有的基础设施。谷歌搜索引擎本身的设计,就旨在让它能够无缝链接成千上万的服务器。如果出现更多的处理或存储需要,抑或某台服务器崩溃,谷歌的工程师们只要再添加更多的服务器就能轻松搞定。
谷歌软件技术的设计也秉持着同样的基础设施理念。MapRece(谷歌开发的编程工具,用于大规模数据集的并行运算。——译者注)和谷歌文件系统(Google File System)就是两个典型的例子。《连线》杂志在 2012年初夏曾报道称,这两个软件系统“重塑了谷歌建立搜索索引的方式”。
为数众多的企业如今开始使用Hadoop, 它是MapRece和谷歌文件系统的一种开源衍生产品。Hadoop允许横跨多台电脑,对庞大的数据集合进行分布式处理。在其他企业刚刚开始使用Hadoop的时候,谷歌早已多年深耕大数据技术,这让它在行业中获得了巨大的领先优势。
如今谷歌正在进一步开放数据处理领域,将其和更多第三方共享。谷歌最近刚刚推出web服务BigQuery。该项服务允许使用者对超大量数据集进行交互式分析。按照谷歌目前的状况,“超大量”,意味着数十亿行数据。BigQuery 就是按指令在云端运行的数据分析。
除此以外,谷歌还坐拥人们在谷歌网站进行搜索及经过其网络时所产生的大量机器数据。用户所输入的每一个搜索请求,都会让谷歌知道他在寻找什么,所有人类行为都会在互联网上留下痕迹路径,而谷歌占领了一个绝佳的点位来捕捉和分析该路径。
不仅如此,谷歌在搜索之外还有更多获取数据的途径。企业安装“谷歌分析(Google Analytics)”之类的产品来追踪访问者在其站点的足迹,而谷歌也可获得这些数据。网站还使用“谷歌广告联盟(Google Adsense)”,将来自谷歌广告客户网的广告展示在其站点,因此,谷歌不仅可以洞察自己网站上广告的展示效果,同样还可以对其他广告发布站点的展示效果一览无余。
将所有这些数据集合在一起所带来的结果是:企业不仅从最好的技术中获益,同样还可以从最好的信息中获益。在信息技术方面,许多企业可谓耗资巨大,然而在信息技术的组成部分之一——信息领域,谷歌所进行的庞大投入和所获得的巨大成功,却罕有企业能望其项背。
亚马逊步步紧逼
谷歌并不是惟一一个推行大数据的大型技术公司。互联网零售商亚马逊已经采取了一些激进的举动,令其有可能成为谷歌的最大威胁。
曾有分析者预测,亚马逊2015年营收将超过1000亿美元,它即将赶超沃尔玛成为世界最大的零售商。如同谷歌一样,亚马逊也要处理海量数据,只不过它处理数据带有更强的电商倾向。消费者们在亚马逊的网站上对想看的电视节目或是想买的产品所进行的每一次搜索,都会让亚马逊对该消费者的了解有所增加。基于搜索和产品购买行为,亚马逊就可以知道接下来应该推荐什么产品。而亚马逊的聪明之处还不止于此,它还会在网站上持续不断地测试新的设计方案,从而找出转化率最高的方案。
你会认为亚马逊网站上的某段页面文字只是碰巧出现的吗?如果你这样认为的话,你应该再好好想一想。整个网站的布局、字体大小、颜色、按钮以及其他所有的设计,其实都是在多次审慎测试后的最优结果。
以数据为导向的方法并不仅限于以上领域,按一位前员工的说法,亚马逊的企业文化就是冷冰冰的数据导向型文化。数据显示出什么是有效的、什么是无效的,新的商业投资项目必须要有数据的支撑。对数据的长期专注让亚马逊能够以更低的售价提供更好的服务。消费者常常会完全跳过谷歌之类的搜索引擎,直接去亚马逊网站搜索商品、并进行购买。
争夺消费者控制权的战争硝烟还在弥漫扩散,苹果、亚马逊、谷歌,以及微软,这四家公认的巨头如今不仅在互联网上厮杀,在移动领域同样打得难解难分。鉴于消费者们把越来越多的时间花在手机和平板电脑等移动设备上,坐在电脑前的时间越来越少,因此,那些能进入消费者掌中移动设备的企业,将在销售和获取消费者行为信息方面更具有优势。企业掌握的消费者群体和个体信息越多,它就越能够更好地制定内容、广告和产品。
从支撑新兴技术企业的基础设施到消费内容的移动设备,令人难以置信的是,亚马逊的触角已触及到更为广阔的领域。亚马逊在几年前就预见了将服务器和存储基础设施开放给其他人的价值。“亚马逊网络服务(Amazon Web Services,简称 AWS)”是亚马逊公司知名的面向公众的云服务提供者,为新兴企业和老牌公司提供可扩展的运算资源。虽然AWS 成立的时间不长,但已有分析者估计它每年的销售额超过15亿美元。
AWS所提供的运算资源为企业开展大数据行动铺平了道路。当然,企业依然可以继续投资建立以私有云为形式的自有基础设施,而且很多企业还会这样做。但是如果企业想尽快利用额外的、
可扩展的运算资源,他们还可以方便快捷地在亚马逊的公共云上使用多个服务器。如今亚马逊引领潮流、备受瞩目,靠的不仅是它自己的网站和Kindle之类新的移动设备,支持着数千个热门站点的基础设施同样功不可没。
AWS带来的结果是,大数据分析不再需要企业在IT上投入固定成本,如今,获取数据、分析数据都能够在云端简单迅速地完成。换句话说,企业过去由于无法存储而不得不抛弃数据,如今它们有能力获取和分析规模空前的数据。
实现信息优势
AWS之类的服务与Hadoop之类的开源技术相结合,意味着企业终于能够尝到信息技术在多年以前向世人所描绘的果实。
数十年来,人们对所谓“信息技术”的关注一直偏重于其中的“技术”部分。首席信息官的职责只不过是对服务器、存储和网络的购买及管理。而今,信息以及对信息的分析和存储、依据信息进行预测的能力,正成为企业竞争优势的来源。
信息技术刚刚兴起的时候,较早应用信息技术的企业能够更快地发展,超越他人。微软在20世纪90年代树立起威信,这不仅仅得益于它开发了世界上应用最为广泛的操作系统,还在于它当时在公司内部将电子邮件作为标准沟通机制。
在许多企业仍在犹豫是否采用电子邮件的时候,电子邮件事实上已经成为微软讨论招聘、产品决策、市场战略之类事务的机制。虽然群发电子邮件的交流在如今已是司空见惯,但在当时,这样的举措让微软较之其他未采用电子邮件的公司,更加具有速度和协作优势。拥抱大数据、在不同的组织之间民主化地使用数据,将会给企业带来与之相似的优势。诸如谷歌和Facebook之类的企业已经从“数据民主”中获益。
通过将内部数据分析平台开放给所有跟自己的公司相关的分析师、管理者和执行者,谷歌、Facebook 及其他一些公司已经让组织中的所有成员都能向数据提出跟商业有关的问题、获得答案
并迅速行动。 以Facebook为例,它将大数据推广成为内部的服务,这意味着该服务不仅是为工程师设计的,也是为终端用户——生产线管理人员设计的,他们需要运用查询来找出有效的方案。因此,管理者们不需要等待几天或是几周的时间来找出网站的哪些改变最有效,或者哪些广告方式效果最好,他们可以使用内部的大数据服务,而该服务就是为了满足其需求而设计的,这使得数据分析的结果很容易就可以在员工之间被分享。
过去的二十年是信息技术的时代,接下来二十年的主题仍会是信息技术。这些企业能够更快地处理数据,而公共数据资源和内部数据资源一体化将带来独特的洞见,使他们能够远远超越竞争对手。如同我所撰写的《大数据的八大定律》(The Top 8 Laws Of Big Data)所言,你分析数据的速度越快,它的预测价值就越大。企业如今正在渐渐远离批量处理(批量处理指先存储数据,事件之后再慢慢进行分析处理),转向实时分析来获取竞争优势。
对于高管们而言,好消息是:来自于大数据的信息优势不再只属于谷歌、亚马逊之类的大企业。Hadoop之类的开源技术让其他企业同样可以拥有这样的优势。老牌财富100强企业和新兴初创公司,都能够以合理的价格,利用大数据来获得竞争优势。
大数据的颠覆
大数据带来的颠覆,不仅是与以往相比可以获取和分析更多数据的能力,更重要的是获取和分析等量数据的价格也正在显著下降,而价格越低,销量就会越高。然而,隐含其中的讽刺关系正如所谓的“杰文斯悖论”(Jevons Paradox)。经济学家杰文斯通过观察工业革命得出该悖论,并以他的名字命名(杰文斯悖论的核心是,资源利用率的提高导致价格降低 , 最终会增加资源的使用量。——译者注)。科技进步使储存和分析数据的方式变得更有效率,公司将做更多的数据分析,因此并没有减少工作。简而言之,这就是大数据带来的颠覆。
从亚马逊到谷歌,从IBM到惠普和微软,大量的大型技术公司纷纷投身大数据,而基于大数据解决方案,更多初创型企业如雨后春笋般涌现,实现开放源和共享云。大公司致力于横向的大数据解决方案,与此同时,小公司则专注于为重要垂直业务提供应用程序。有些产品优化销售效率,还有些产品通过将不同渠道的营销业绩与实际的产品使用数据相关联,为未来营销活动提供建议。这些大数据应用(Big Data Applications,简称BDA)意味着小公司不必在内部开发或配备所有大数据技术;在很多情况下,它们可以利用基于云端的服务来满足数据分析需求。在技术之外,这些小企业还会开发一些产品,追踪记录与健康相关的指标并据此提出改善人们行为的建议。诸如此类的产品有望减少肥胖,提高生活质量,同时降低医疗成本。
大数据路线图
产业分析研究公司福雷斯特(Forrester)估计,企业数据的总量在以每年 94% 的增长率飙升。这样的高速增长之下,每个企业都需要一个大数据路线图。至少,企业应制订获取数据的战略,获取范围应从内部电脑系统的常规机器日志,到线上的用户交互记录。即使企业当时并不知道这些数据有什么用也要这样做,这些数据的用处随后或许会突然被发现。
数据所具有的价值远远高于你最初的期待,千万不要随便抛弃数据。企业还需要一个计划以应对数据的指数型增长。照片、即时信息以及电子邮件的数量非常庞大,由手机、GPS 及其他设备构成的“感应器”释放出的数据量甚至还要更大。
理想情况下,企业应该具备一种能够让数据分析贯穿于整个组织的视野,分析应该尽可能地接近实时。通过观察谷歌、亚马逊、Facebook和其他科技领袖企业,你可以看到大数据之下的种种可能。管理者需要做的就是在组织中融入大数据战略。
谷歌和亚马逊这样的企业,应用大数据进行决策已数年有余,它们在数据处理上已经获得了广泛的成功。而现在,你也可以拥有同样的能力。
以上是小编为大家分享的关于关于大数据你不可不知的大企业及大布局的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 大数据的大价值预测
大数据的大价值预测
数据本身是不会说话的,但是数据总结出的历史、数据反映出来的现状、数据呈现出的趋势能够说话。基于指标体系的预测分析平台建设的价值在于:平台展现出的任何一条曲线的变化都对应着某一个现状或问题,以及相关联的一系列指标,都意味着需要采取相应的改良措施。同时,由于行业数据的特殊性,结合专家的经验,可获取到管理上的缺陷,制定出相应的预防措施,反馈到企业的指标体系中,通过调整来进一步加强数据质量的管理,进而为有效提高续保率提供科学的数据依据。
2013年伊始,大数据开始充斥媒体,各行各业都相继进行数据分析、数据挖掘、领导决策等,那些占有“大数据”资源先天优势的群体,能否有效利用好数据,打破现有的传统格局,将决定其未来发展的命运。
大数据时代面临的挑战与机遇
大数据时代下的三百六十行,最不缺乏的就是数据,包括历史数据、行业最新数据等,但是却受阻于过量的冗余数据和数据不一致,而且它们变得越来越难于访问、管理和用于决策支持。目前的行业数据大多还停留在“集中化使用”阶段,传统的数据仓库方式,数据有进无出,仅解决了数据存储的问题,如何综合有效地使用这些数据,成为一大难题。而随着数据量成倍的增长,如何把这些大量的数据转换成可靠的信息以便于决策支持,是各行业面临的挑战。
大数据的本质是解决问题,大数据的核心价值就在于预测,而企业经营的核心也是基于预测所做出的正确判断。所以,我们应当充分地认识到:大数据时代对于各个业来讲,既存在挑战,也是一个巨大的机遇。
首先,面对海量数据,依靠在各行各业丰富的数据治理方法论,实现源头数据的质量保障,确保基于这些真实数据的分析与决策能够行之有效。
如何保障数据质量?
通过顶层设计的理念,确立企业的核心目标,围绕这个核心目标进行逐级分解,形成细颗粒度的详细指标体系,而基于指标体系的数据采集及处理平台,则以指标体系为依据,来到各个业务系统里去采集数据,或根据需要使用数据采集平台由人工进行填报,基于涉及各个指标的全样数据的完整采集,通过数据质量清洗工具与相应的检查规则,发现问题可及时对其进行修改,来对源头的数据从技术上进行严格把关。
其次,各行业的应用系统可谓纷繁复杂,由于这些系统的建设都是相对独立的,传统的数据处理方式只能针对各个业务系统去形成相应的分析数据,本质上未将数据进行整合与统一规划,因此形成了数据孤岛的现象。同方运用顶层设计理念下的指标体系梳理方法,以及业务元数据的技术手段,对各个业务系统的数据最终形成资源,进行统一化、标准化、集中化管理,实现数据的全局共享。用于综合应用、预测分析、领导决策等。
最后,通过基于指标体系的预测分析平台,能够为决策管理者提供科学的数据依据,同时也为涉及企业的客户管理、销售管理、市场管理、运维管理等各方面提供调整依据。
⑶ 大数据的特征有哪些
大数据所包含特征,具体如下:
第一个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
第三个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
大数据的作用及其用途
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。
1、变革价值的力量
2、变革经济的力量,生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
3、变革组织的力量,随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。
⑷ 大数据的特点有哪些
根据《大数据时代》大数据的特点主要分为以下四点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)
一、Volume(大量)
大数据的特征其实是我们现在理解的海量数据。“大数据”在互联网行业是必备项:互联网公司在日常运营中生成、累积的用户网络行为的数据。比如社交电商平台每天的产生订单, 各个短视频、论坛、社区发布的帖子、评论及小视频, 每天发送的电子邮件, 以及上传的图片、视频与音乐,等等, 这些无数个体产生的数据规模很庞大,数据体量早已达到了PB级别以上,大数据的大量就是我们说的海量数据。
二、Velocity(高速)
随着网络传输速率不断攀升,从传统的百兆到千兆万兆网络,移动网络也已经逐步升级到了5G时代,数据的产生和传输都越来越高速。所以客户越来越强调实时反馈,就是无论是在线看电影还是在线直播、刷视频都要求低延时,对于传输、存储、播放都要求高度,人们和企业都越来越依赖互联网,网上的实时交易、在线培训、社交等都与每个人息息相关,云计算平台大数据平台担负着高质量的服务功能,运营方还是服务商对于海量数据,谁能提供更快的速度,谁就能获得更多的用户和订单!
三、Variety(多样)
数据多样性其种类包括文字、图片、视频、语音、地图定位信息、网络日志信息等等,正是多样化的数据形式决定了大数据的更高价值。对于数据挖掘和数据资产越来越受到企业的重视,多类型的数据对数据的存储和处理能斗做力都提出了更高的要求。目前应用最广泛的就是智能推荐系统,如今日头条,网络、抖音等,这些平台都会通过对用户的行为进行分析,从而智能地推荐用户喜欢的内容页面。
四、Value(低价值密度)
随着物联网的广泛应用,往往人们需要从仿销脊海量的数据中提取相关联的有用的信息,所以对于大数据的机器学习深度学习算法可以发挥巨大作用。大数据最大的价值备渗在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识。
⑸ 人类进入数据化生存时代 大数据蕴含大价值
人类进入数据化生存时代 大数据蕴含大价值_数据分析师考试
移动互联技术的普及,将每一个人都纳入到互联网之中,并随之产生海量的数据。那么,这些数据意味着什么,对人类有何价值?这就是当前计算机领域最热门的“大数据”研究。10月20日,中国计算机学会大数据专家委员会成立,在随后的“大数据”论坛上,与会嘉宾认为,人类已经进入了一个“数据化生存”的时代,“大数据”中蕴含着巨大的价值,并且已经在日常生活中发挥着潜移默化的作用。
据经济之声《天下财经》报道,“数据”是什么?数据就是资源,它像空气和水、石油和煤炭一样,就在你的周围自然而然的存在着,你每一次点击鼠标,每一次刷卡消费,其实就已经参与到了数据的生成,可以说,每一个人既是数字的生产者,也是数据的消费者。英国帝国理工学院教授、海量数据分析专家郭毅可就是这种理念的坚定支持者。
郭毅可:以前数据不是人类的资源,现在数据是一种自然资源,和水、油、气一样,没有数据不能生活,这就是数据。
其实,数据一直存在,但为什么现在人们会如此重视它?美国罗格斯-新泽西州立大学商学院教授熊晖认为,这是因为当前的技术手段为“大数据”的收集和分析提供了保障。
熊晖:现在这个大数据,我们第一次有了这么精细的观测手段,比如说,以前我们不可能知道每一个人的地理信息,现在我可以非常精细的知道你每时每刻在什么地方出现,然后就可以产生非常精细化的数据,可以用来描述人、社会和整个环境的行为,这些东西我们了解的更深了,可以帮助我们减少社会的复杂度。
今年3月,美国奥巴马政府宣布了“大数据研究和发展计划”,并设立了2亿美元的启动资金,希望增强收集海量数据、分析萃取信息的能力,认为这事关美国的国家安全和未来竞争力,鼓励大学培养下一代的“大数据科学家”。
如果抛开政府行为,“大数据”分析其实早已经在商业领域大显身手。金蝶国际软件集团首席科学家张良杰介绍,他们参与搭建的全国中小企业信息平台,上面汇集了4000万家企业,通过对这些企业海量数据的挖掘和分析,能够对经济运行状况做出准确的预警,有助于国家相关部门做出应对决策。此外,张良杰还举例说,在微观经济领域,“大数据”的作用也越发凸显。
张良杰:(美国一家公司)把天气预报的信息和数据,利用跟天气相关的大数据,在亚马逊的云平台上做处理,然后可以帮助农业的种植者能够很好地保障他们的收益。另外一个领域就是在企业的管理上,大数据可以帮助他们做决策。
在金融领域,“大数据分析”早已经成为一种流派,在美国华尔街,对冲基金、股票分析、高频数据交易等领域,数据分析师都是最抢手的人才;在中国,阿里巴巴旗下的金融业务,也开始利用电子商务数据来发放“信用贷款”,发展势头迅猛。
中科院虚拟经济与数据科学研究中心副主任石勇,是人民银行征信系统的建立者之一,他介绍,“征信系统”也是大数据的一种应用,是一个国家金融业务开展的基础。
石勇:在座的每一个人在银行做的任何事,包括在ATM上取钱,数据都在里面,现在各个商业银行都在用你们的信用评分(这个模型就是我们算出来的)来做贷款处理,这个重要性就不用讲了,美国引发次贷危机的三大指标之一就是信用评分,我们连信用评分都没有,怎么把经济工作搞好?
还有学者预测,谁拥有了数据以及对数据的发掘能力,谁就将占领下一个十年全球经济发展的制高点。但是目前,我国大数据应用刚刚起步,基于大数据的商业模式还在萌芽阶段,从需求来看,很多产业对大数据的使用还没有意识,而供给一方,由于技术和人才储备上的落后,也缺乏深厚的数据分析手段来支撑需求。
此外,在制度层面,中国工程院院士、中国计算机学会大数据专家委员会主任李国杰提醒,当前我国大量的基础数据掌握在政府部门手中,今后要想不输在起跑线上,政府部门就要有更开放的姿态分享手中的数据。
李国杰:政府部门的数据共享一直是个软肋,国外有数据公开法等法律的规定,政府采购的信息要共享等等,相对来说执行的比价好,而中国由于部门的色彩(比较重),这些大数据怎么共享利用这是要解决的大问题,也呼吁政府要尽快实现数据的共享,实现数据的开发。
以上是小编为大家分享的关于人类进入数据化生存时代 大数据蕴含大价值的相关内容,更多信息可以关注环球青藤分享更多干货
⑹ 什么是大数据时代
利用相关算法对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活。
大数据无处不在,社会各行各业都可以找到大数据的印记,在金融,餐饮,电信,体育,娱乐等领域都可以感受到大数据对各行各业的影响
1、更多,更乱,但内部有关系可循。
示例:
大约20年前,亚马逊刚成立时,杰夫·贝索斯让50个书评员来为他卖书,他意识到不仅仅可以请人来写书评,还可以用数据技术来提供图书推荐。起初他使用的是小数据,不是大数据,把客户进行分类,比如说有人对中国旅游或者是对园艺感兴趣,系统会自动提供推荐。他的同事告诉他,刚刚开始使用这个数据推荐时,使用体验并不好;在进一步分析后,亚马逊决定不对人进行分类,而是对用户的需求分类。这个做法做法非常成功,以至于到今天,推荐系统为亚马逊带去30%的销售收入。
这就是数据收集和再处理。亚马逊有交易数据,每买一本书就是一个交易,然后对这个数据进行分析。但今天我们已不再满足于交易数据了,转而收集起沟通数据。你看了某一个书评、某一个交流会给商家更多的信息和细节。
2、数据可以被重复使用(数据的产生和收集本身并没有直接产生服务,最具价值的部分在于:当这些数据在收集以后,会被用于不同的目的,数据被重新再次使用)
示例:
比方说这家公司实时车辆交通数据采集商Inrix,该公司目前有1亿个手机端用户。Inrix可以帮助你开车,避开堵车,为司机呈现路的热量图,红的就表面堵车。如果只提供数据,这个产品没什么特色,
但值得一提的是,Inrix并没有用交警的数据,这个软件的每位用户在使用过程中会给服务器发送实时数据,比如走的多快,走到哪里,这样每个客户都是探测器。
每天早上起来想一下,这么多数据我能用来干什么,这些价值在哪里可以找到,能不能找到一个别人以前都没有做过的事情。你的想法和思路,是最重要的资产。
示例:
我们可以通过大数据来确定哪些地方会有火灾。以前防火检查员只有13%的时间可以准备预测,现在他们找到火灾隐患的概率达到了70%,比以前提高了6倍。将效率提高6倍是一个巨大无比的进步,未来的公共服务业可以由此获得更多便利。
⑺ 大数据的特征
大数据的特征有大量化、多样化、快速化、价值密度低。大数据,或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。大数据具有数据规模大、数据类型多样、数据处理速度快和数据价值密度高。
大数据的结构:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。