导航:首页 > 数据分析 > 广州淘金人大数据是做什么的

广州淘金人大数据是做什么的

发布时间:2023-07-13 15:55:20

❶ 博时中淘金大数据100a基金是什么股

时淘金100指数基金复制中证淘金大数据100指数(以下简称“淘金100指数”),该版指数由蚂蚁金权服、博时基金、恒生聚源、中证指数有限公司四方联合打造,依托蚂蚁金服的大数据平台,基于海量的互联网电商交易大数据,通过对用户行为、行业成长、价格变化等因素的分析,来预期一个行业未来盈利状况,预判一个行业的繁荣程度,并在此基础上选取100支股票形成投资组合。此外,在编制上,淘金100指数每个月审核一次样本股,并将样本股调整周期缩短至一个月,与绝大部分的传统指数每半年调整一次指数成分股不同。这样有助于指数及时反映市场动态变化,发挥更快更好跟踪市场的作用。
博时淘金100指数基金投资与淘金100指数的成份股对应,采用等权重方式,帮助投资者快速把握投资机会。据了解,该基金分为A类份额(代码:001242)、I类份额(代码:001243),其中I类份额在陶保旗舰店即可认购。值得一提的是,该基金赎回费率低于其余两只舆情大数据指数基金产品,持有产品满3个月即免赎回费率

❷ 中国有哪些公司在做大数据

大数据近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。本文整理了在中国境内活跃的大数据领域最具影响力的企业,它们有的是计算机或者互联网领域的巨头,有的则是刚刚创办不久的初创企业。但它们有一个共同点,那就是它们都看到了大数据带来的大机会,并毫不犹豫地挺进了这个领域。

在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。

❸ 大数据分析有哪些基本方向

【导读】跟着大数据时代的降临,大数据剖析也应运而生。随之而来的数据仓库、数据安全、数据剖析、数据发掘等等环绕大数据的商业价值的使用逐渐成为职业人士争相追捧的利润焦点。那么,大数据剖析有哪些根本方向呢?

1.可视化剖析

不管是对数据剖析专家仍是普通用户,数据可视化是数据剖析东西最根本的要求。可视化能够直观的展现数据,让数据自己说话,让观众听到成果。

2.数据发掘算法

可视化是给人看的,数据发掘便是给机器看的。集群、切割、孤立点剖析还有其他的算法让咱们深入数据内部,发掘价值。这些算法不只要处理大数据的量,也要处理大数据的速度。

3.猜测性剖析才能

数据发掘能够让剖析员更好的理解数据,而猜测性剖析能够让剖析员根据可视化剖析和数据发掘的成果做出一些猜测性的判别。

4.语义引擎

咱们知道由于非结构化数据的多样性带来了数据剖析的新的应战,咱们需求一系列的东西去解析,提取,剖析数据。语义引擎需求被设计成能够从“文档”中智能提取信息。

5.数据质量和数据管理

数据质量和数据管理是一些管理方面的最佳实践。经过标准化的流程和东西对数据进行处理能够保证一个预先界说好的高质量的剖析成果。

6.数据存储,数据仓库

数据仓库是为了便于多维剖析和多角度展现数据按特定形式进行存储所建立起来的联系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的根底,为商业智能系统供给数据抽取、转换和加载(ETL),并按主题对数据进行查询和拜访,为联机数据剖析和数据发掘供给数据平台。

以上就是小编今天给大家整理分享关于“大数据分析有哪些基本方向?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

❹ 大数据重要的意义

什么是大数据,大数据的意义是什么?
大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
什么是大数据,大数据为什么重要,如何应用大数据
空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。
大数据的意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。 阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。 有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。 大数据的价值体现在以下几个方面:1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销2) 做小而美模式的中长尾企业可以利用大数据做服务转型3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。3)分析所有SKU,以利润最大化为目标来定价和清理库存。4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。5)从大量客户中快速识别出金牌客户。6)使用点击流分析和数据挖掘来规避欺诈行为。
什么是大数据,大数据为什么重要,如何应用大数据
读读这本书吧。。

驾驭大数据 驾驭未来

大数据的流行,也引发了图书业大数据出版题材的升温。去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国 *** 的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。

该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!

大数据重要以及不重要的一面

与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。

网络数据与电子商务

对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。

一些有价值的应用场景

大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手......
大数据的到来对我国经济发展有什么意义
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。

有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。

大数据的价值体现在以下几个方面:

1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销;

2) 做小而美模式的中长尾企业可以利用大数据做服务转型;

3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
互联网大数据有哪些好处多
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。

现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。

通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。

大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。

以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。

为什么使用大数据?

数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。

现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。

更完整的解析

大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。

现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。

类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。

大数据是什么?

由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:

量级(Volume):大量的数据

速率(Velocity):高速的数据产出

多样性(Variety):多种类型和来源的数据。

正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:

网站分析

移动分析

设备/传感器数据

用户数据(CRM)

统一的企业数据(ERP)

社交数据

会计系统

销售点系统

销售体系

消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)

公司内部电子表格

公司内部数据库

位置数据(空间位置、GPS定位的位置)

天气数据

但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。

想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。

大数据的好处

大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......
什么是“大数据”的真正含义
大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据给人们带来的好处
对一般用户来说意义不大,对于药店、药厂有必要了解用户的需求,但是如果真的利用起来能给用户带来选药的便利还是很有用的。比如当你生病不知道选哪种药好的时候,根据循证医学原理能帮你找到合适的药这样也算是带来了好处。
工业大数据对中国有什么意义
工业大数据可以推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂,推动制造模式变革和工业转型升级

国家下一步将利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,研发面向不同行业、不同环节的大数据分析应用平台,选择典型企业、重点行业、重点地区开展工业企业大数据应用项目试点,积极推动制造业网络化和智能化。在应用项目试点过程中,需要开展应用示范安全可靠性方面的测评,利用大数据测试技术、工业电子系统测试技术和工业云测试技术,保障工业企业大数据应用项目试点的稳步推进,中国软件评测中心在相关方面有较深厚的技术积累和案例积累,可以为我国工业大数据发展保驾护航。
大数据的特点主要有什么?
大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。

大数据的特点:

1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;

2、种类(Variety):数据类型的多样性;

3、速度(Velocity):指获得数据的速度;

4、可变性(Variability):妨碍了处理和有效地管理数据的过程。

5、真实性(Veracity):数据的质量

6、复杂性(plexity):数据量巨大,来源多渠道

大数据的意义:

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。

大数据的缺陷:

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。” 这确实是需要警惕的。

❺ 大数据将打开一扇怎样的门

大数据将打开一扇怎样的门
作为人类生活的重要基础,大数据打开了一扇新的大门。而更重要的在于,通过大数据打开的那扇门,人们看到的不只是数据本身,而是在大数据基础上出现的一种新的人类文明。
近20年来,大数据浪潮已经向我们扑面而来。有人形容,大数据就像一片无边无际的大海,海面一浪高过一浪,而浪潮之下深不见底。与此同时,从国际零售巨头沃尔玛“啤酒和尿布”的经典案例到精准医疗等,大数据在人们生活和工作中的重要性越来越得以凸显。面对大数据打开的一扇新的大门,我们不能不深入思考:这将是怎样的一扇大门?又会将我们带进一个怎样的世界?
大数据正在把世界变成数据?
从通常的定义看,大数据被认为是不能用传统数据库软件工具获取、贮存、管理和分析的数据集合。这是大数据的技术定义,但显然,并没有涉及大数据浪潮深处最重要的内容。
大数据技术定义最主要的一个着眼点,就是规模大。但是,大数据的关键性质不主要是规模大,而是完全不同于作为样本数据的小数据。通常,样本数据的获取总是在先设定明确甚至单一目的的。这种具有在先设定的取样,一方面可以更好地实现采样前预设的目标;另一方面就像亚里士多德所说,在选择了某种可能性的同时,也抹去了无数其他可能性的蓓蕾。
大数据的另一个更重要性质是维度全。通常,我们拍照会选取一个角度,角度一取,数据就固定了。面对一张拍好的平面照片,再要换个角度去观察已不可能。而大数据则几乎保留了全纬度。面对大数据,我们可以从不同的角度进行考察。当然,事实上没有任何大数据是真正“全”的,就像世界上没有任何事物是十全十美的,但是,就人类的使用需要来说,其维度则可以看作是“全”的。作为样本数据,小数据是“残缺”的。就像尼采说抽象的概念是“干枯的标本”,样本数据和抽象概念的共同特点都是已经“失活”了。而大数据意味着活数据(动态数据)、全数据。因此,“全数据”是理解大数据的一个富有哲学意蕴的角度。从这个角度,我们可以看到更丰富的内容:大数据是不仅在规模上大,而且在维度上全到就人类使用需要而言的全数据。
大数据特别是其全数据的性质意味着什么呢?
在大数据的基础上,物数据化和数据物化构成循环。大数据的核心口号是量化世界。而量化世界为创构世界奠定了基础。这是因为,物数据化事实上就是物信息化,而物信息化是一个含义更为广泛的概念,它与小数据基础上也能出现的物数据化完全不同。同样,数据物化实质上就是信息物化。信息物化和物信息化两个方面所构成的循环,使人类进入一个创构的时代。大数据基础上的创构与筑路修桥等工程不一样。随着数字技术的发展,创构活动及其产物与人的存在方式越来越密切地联系在一起。
这里涉及一个新的重要概念,信息。对于信息,已有一百多个定义。其中,控制论创始人维纳的定义最为耐人寻味。在维纳看来,“信息就是信息,既不是物质也不是能量”。这个定义看上去像是同义反复,但却富有深意。它表明,信息是一种不同于物能,但又具有和物能并列地位的资源。信息不仅既不是物质也不是能量,而且具有一些物能所不具有的重要性质。比如,物能复制成本呈正比增加,而信息复制的边际成本递减;物能越分享越少,而信息越共享越多。信息的这些重要性质,在作为样本数据的小数据时,显示不出其重要性,而在具有全数据性质的大数据基础上,则就非同寻常了。在大数据的基础上,信息不可能不对人类的文明发展产生极为重要的影响。
如今,作为人类生活的重要基础,大数据打开了一扇新的大门。而更重要的在于,通过大数据打开的那扇门,人们看到的不只是数据本身,而是在大数据基础上出现的一种新的人类文明。
关于大数据的特征,最多的提到了“42v”
关于大数据的特征,最早是用“3v”概括的。几年前,人们认为“3v”不足以描述大数据的特征,又提出了“4v”的描述。到现在,关于大数据特征,最多的提到了“42v”。不过,对于大数据特征,目前获得较多共识的是这“4v”,即大量“volume”、多样“verity”、高速“velocity”和价值“value”。
“volume”一般理解为大量。大数据首先意味着数据量巨大。小数据时代主要由人工创建数据,而大数据时代则是由机器、网络和人类相互作用生成。大量是大数据的基本特征,但往往被误以为大数据就是大,事实上,这个特征所表达的是大数据规模的整全性。正如前面所谈到的,大数据的“大”不是纯粹的量的概念,这个“大”的关键是全。样本数据也可以规模很大,但不具有大数据的性质。大数据的“大”事实上是一个质的概念。
“verity”一般理解为多样。这包括大数据来源的多样性和类型的多样性,也包括数据结构的多样性。但是,“verity”不能简单地理解为数据来源和类型的多样性,也不能只是进一步涉及数据的结构化、半结构化和非结构化。由于数据结构的多样性和复杂性,大数据的这一特征还意味着数据结构的开放性。数据的结构化、半结构化和非结构化所表达的,不仅仅是数据的结构状态,更意味着开放的大数据结构。比如,大数据与大自然不同。大自然可以满足我们的生存需要,但我们面对大自然,作为很有限。而大数据不一样,在以人类需要为出发点的大数据挖掘中,数据结构开放在数据和人类需要及其发展这一无限空间中,人类则正是在这一无限空间进行满足自己需要的创构。
“velocity”一般理解为高速。它不仅仅是指技术设备的数据处理速度,更重要的,是指决定于数据处理速度的实时数据流。样本数据在取样后就是冻结的,而大数据可以实时获取所需信息。对于大数据来说,信息是活的,是随着时间而流动的。正因为如此,对于实时数据流来说,速率就特别重要。高速的数据流更能在时间上与现实过程同步,因而跟人类的生存更密切地联系在一起。不仅如此,只有高速流动的数据,才能为我们提供无限的可能性。以往由于受速率限制,我们所获得的数据和所要反映的内容往往是脱节的,而数据流的高速率使我们把握对象的手段越来越完善。事实上,大数据的整全性就包括数据流速这个至关重要的维度。
“value”用以描述大数据的价值。这个“v”所涉及的是大数据最重要的特征。人们普遍认为,大数据的价值密度低,数据挖掘是“沙里淘金”。其实,大数据价值特征的重要性不言自明,但大数据也十分复杂。大数据是否有价值的关键,在于能否把握数据背后所揭示的相关关系组合与人的需要及其发展的关系。由于与人的需要及其发展相联系,由于数据结构是开放的,大数据的价值不再只是简单地反映大数据与人的自在需要的关系,而更与人的理解能力密切相关。对于同一个结构开放的大数据,在有的人看来是一座宝库,价值连城;而另一些人则可能视其为一堆垃圾,毫无意义。大数据的价值和意义,很大程度上取决于人们关于大数据相关关系和人的需要及其发展之间关联的理解,取决于人们的眼光,而归根结底,取决于对人的需要及其发展的理解和把握。而这显然是个典型的哲学课题。随着大数据的发展,不仅哲学等各学科将越来越相互融合,而且将迎来哲学与科学、社会和生活一体化发展的时代。
大数据应用:毫无意义的垃圾,还是价值连城的宝库?
上述所谈到的,大数据究竟是垃圾,还是宝库,涉及的是大数据的应用。换句话说,既然大家都认为大数据是个好东西,是个有用的东西,那么,怎么应用呢?
就目前而言,大数据应用仍然是国际上一个重要而前沿的话题。而大数据中的相关关系和因果关系,是当前大数据应用和分析研究中的重要问题。大数据凸显了相关关系的巨大魅力,但同时构成了对传统因果观念的严峻挑战。
跨国零售企业沃尔玛“啤酒和尿布”的故事,就是人们津津乐道的大数据应用的一个经典案例。沃尔玛在大数据基础上,用“购物篮方法”分析消费者购物行为时发现,一些男性顾客在购买婴儿尿布时,常常会同时买几瓶啤酒。原来,美国家庭有了小孩,一般是母亲在家照顾孩子,父亲外出采购。而为家里添丁忙碌的年轻父亲们在购买尿布时,常常会稍带给自己买上几瓶啤酒,既解乏又喜庆。由此,沃尔玛推出啤酒和尿布摆在一起的促销方式,吸引了更多有这种需要的顾客到沃尔玛购物,使尿布和啤酒的销量都大幅增加。
大数据相关关系在类似行业的成功应用,使人们理所当然地提出还要不要深究因果关系的问题。一些极端的观点甚至认为:大数据是关于“是什么”而不是“为什么”的;大数据会自己说话,因而,只要相关关系,不要因果关系。只要相关关系不要因果关系的观点,显然是兴奋于大数据相关关系令人惊叹的实用性。但其实,大数据不仅把握相关关系,而且把握作为其根基的因果关系。
“蛋挞和手电筒”,就是一个典型的例子。与“啤酒和尿布”的案例一样,沃尔玛的大数据表明,很多人在买手电筒的同时购买了蛋挞。因而,根据顾客同时购买蛋挞和手电筒的相关性,在货架上把它们摆放在一起,以提高销售量。但是,如果知道其背后的因果关系,相关销售效果显然会更好。究其原因,有人发现,人们同时购买手电筒和蛋挞的因果关系涉及北美飓风。这是因为,飓风来临前人们既需要准备手电筒,又需要准备食物。可是,北美飓风是季节性风暴,如果只知道相关关系不知道因果关系,就可能一直把手电筒和蛋挞这两类不同商品放在同一货架上。而知道了背后的因果关系,就可以在飓风来临前把蛋挞和手电筒放在一起,而且还可专设飓风用品位置。
可见,只要相关关系、不要因果关系的观点,很容易被驳倒。其实,更关键的问题,不在于是相关关系还是因果关系更加重要,而在于怎么理解相关性和因果性之间的关系。
关于这一问题的研究,涉及传统因果概念的重新刻画。传统因果观只是反映了日常生活和经典物理学中因果关系的表观现象,“原因的原因的原因……”。一方面,追溯通常会导致最终原因的难题,另一方面,作为原因的现象引起作为结果的现象的简单模型,具有明显的内在逻辑矛盾。这样的因果模型,不仅不能理解大数据的相关关系,更不能建立起大数据相关关系和因果关系的关联。只有把原因看作是因素相互作用的过程,把结果看作是因素相互作用过程的效应,才能扩展对因果关系的理解,从而适用于大数据相关关系和因果关系问题的认识。由此建立起来的新因果模型具有内容丰富的结构,不仅存在因素相互作用已经完成和因素相互作用进行中的环节,还存在因素尚未进入相互作用的环节。这就呈现出了因果模型的过去时态、进行时态和未来时态。这不仅更有利于人们理解凝固的因果关系,而且在人们面前敞开了创构未来的广阔空间。
由此,不仅可以看到,相关关系其实有它的因果根据,而且可以对相关关系和因果关系作一个统一的理解。在新的因果模型中,相关关系可以被理解为是因果派生关系,包括因素和结果之间的关系、结果和结果之间的关系以及特别重要的因素和因素之间关系。由于这些因素和结果还包括潜在的,我们还可以看到大数据相关关系的因果根基以及很多耐人寻味的重要内容,包括一些奇特相关关系案例的理解。由于相对于潜在结果,因素关系构成了无限广阔的可能性空间,由此构成的相关关系内容非常丰富。在潜在因素的无限空间中,根据特定需要,让特定因素以特定方式进入特定相互作用过程,就能创构出我们所需要的东西。显然,这种新的因果关系与现实社会更加接近。
大数据将带来新的信息文明并影响世界权力重构
如果把以往的文明形态都看作是物能文明的话,那么,人类社会发展到大数据时代所迎来的,则是一种不同于物能文明的信息文明。信息文明的形成和发展,必须有大数据作为基础。作为一种与物能文明相平行的文明形态,信息文明是一种基于信息本性的共享文明。只有在大数据的基础上,信息的共享本性才可能充分展开。而且,信息文明的发展,是一个在大数据基础上的公共信息对称化过程。
这就要求,一方面,为推动信息文明的发展,必须在公共领域尽可能消除信息不对称;另一方面,为保持信息文明发展的动力,必须尽可能保护创新专利,而这也只有基于大数据才有可能。作为一种人类文明,信息文明是一种基于信息机制的役物文明。在信息文明时代,人类越来越通过信息控制物能,使物质通过结构的调整,由一种对人类不那么有价值的材料变成价值更大的材料,从一种不太能满足人的需要的形态变成一种更能满足人的需要的形态,使能量从难以利用的形态变成更容易获得和利用的形态,从而,人类活动更多地是直接与信息打交道而不是传统的主要与物能打交道。而这些都必须在大数据基础上进行。如果没有大数据,信息即使重要,但也只能居于依附的地位。
作为人类文明发展的更高阶段,信息文明还是一种基于信息创构的人性文明。正是大数据,也只有大数据,才能为这种创构的文明提供必不可少的信息空间。某种程度上说,信息创构活动是最符合人性的活动,只有到了以大数据为基础的信息时代,人类历史才真正步入人性文明的轨道,不仅对物能的控制达到全社会甚至全人类实现“物为人役”的水平,使人类活动从以描述认识为主进入到以创构认识为主;而且,创构时代所需要的全面解放创造力,也意味着社会发展到了这样的程度,即人性在社会维度获得程度越来越高的解放的文明水平。由此可见,信息文明与物能文明的区分,本质上不是一种基于社会生产方式的区分,而是一种基于人的存在状态的人类文明划分。这意味着,大数据将越来越成为人类生存的重要基础,也意味着人将越来越以信息方式存在。
人越来越以信息的方式存在,预示着大数据所打开的信息文明大门,也将释放出一系列新的重要问题。这些重大的问题,既涉及个人生活,也涉及社会发展。
一是信息生态问题。由于人越来越以信息方式存在,信息生态理所当然成了一个越来越重要的基础性问题。对于人类来说,自然生态或更根本地说物能生态具有切身性,而信息生态则不仅具有切身性,而且更具“切心性”,信息生态更切近人的心灵。因此,在自然生态的基础上,信息生态将日益为人们所密切关注,成为信息文明时代关乎人类发展的问题。就像在物能文明时代,自然生态是关乎人类生存的问题一样。
二是人的存在意义问题。没有物能就没有信息的存在,物能存在是基础。但是,在信息文明时代,如果一个人仍然主要以物能方式存在,仍然以基于物能的感官享受作为生活意义的主要来源,一句话,仍然主要滞留于物能存在方式,那么,很可能将迟早将进入无意义的人群。在信息文明时代,人类的活动主要是信息活动,只有主要以信息方式存在,并且以创构活动作为自己主要活动方式的人,才能进入意义生产的领域。在这个意义上,信息文明的确意味着这样一种分化:相对无意义的人群和生产意义的人群。这很可能将是信息文明时代发展的必然趋势。当然,对此人类社会也应当提前思考,如何避免新的社会不公平的出现。
三是国家的发展问题。从人类社会发展史中可以看到一个重要事实:一个大国的真正崛起,通常必须要引领一种新的文明。信息文明时代的到来,必定伴随着大国的新的崛起,不管是现实的还是潜在的大国。在21世纪,中国要和平发展、成为世界上的大国,就需要引领信息文明。也许,信息文明不可能再像传统文明时代的世界那样,由某个国家引领,但不进入引领信息文明国家的行列,任何国家都不可能真正作为大国崛起。而国家的兴衰与个人的生存和发展不仅联系在一起,而且构成一个相互依存和协同发展的循环。
21世纪的竞争,将是信息的竞争。大数据时代的竞争将是信息文明引领的竞争,这意味着,大数据时代,中国要么在引领信息文明中作为真正的大国,要么只是作为大国崛起在物能文明层次。这也是从大数据所打开的信息文明大门,我们能越来越清晰看到的最为关切的一个重要内容。

❻ 大数据是什么,是怎么带动经济发展的

大数据的概念

概念:难以用常规的数据库工具获取、存储、管理、分析的数据集合。

特征:

1、数据量大:起始单位是PB级的。

1KB=1024B

1MB=1024KB

1GB=1024MB

1TB=1024GB

1PB=1024TB

1EB=1024PB

1ZB=1024EB

2、类型多:

结构化、板结构化、非结构化:网诺日志、音频、视频、图片、地理位置等信息混杂。

3、价值密度低:

获取数据的价值就像是淘金一般。

4、速度快时效高:

数据呈指数倍增长,时效性要求高,比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能的完成实时推荐。

5、永远在线:

大数据时代的数据是永远在线的,随时应用计算,这也是区别于传统的数据的最大特征。

大数据从哪来

1、搜索引擎服务

网络数据量1000PB,每天响应138个国家数十亿次请求,每日新增10TB

2、电子商务

3、社交网络

QQ:8.5亿用户,用4400台服务器存储用户产生的信息,压缩后的数据100PB,每天新增200~300TB

4、音视频在线服务

5、个人数据业务

6、地理信息数据

7、传统企业

8、公共机构

智慧城市:摄像头拍摄的图片,1080P高清网络摄像机一月产生1.8TB数据,大点的城市50万个摄像头,一个月3PB的数据量。

医疗、中国的气象系统。

大数据的存储与计算模式

存储:

面临的问题:数据量大、类型复杂(结构化、非结构化、半结构化)

关键技术:

1、分布式文件系统(高效元数据管理技术、系统弹性扩展技术、存储层级内的优化、针对应用和负载的存储优化技术、针对存储器件的优化技术)

2、分布式数据库

事务性数据库技术:NoSQL:(支持非关系数据库、具有多个节点分割和复制数据的能力、用最终一致性机制解决并发读操作与控制问题、充分利用分布式索引及内存提高性能)代表有:BigTable、HBase、MongoDB、Dynamo。

分析型的数据库技术:Hive 、Impala

3、大数据索引和查询技术

4、实时流式大数据存储与处理技术

计算:

面临的问题:数据结构特征、并行计算(以分布式文件为基础的Hadoop以分布式内存缓存为基础的Spark)、数据获取(批处理流处理)、数据处理类型(传统查询数据挖掘分析计算)、实时响应性能、迭代计算、数据关联性(先map一下再rece一下)。

关键技术:

1、大数据查询分析计算模式与技术:HBase、Hive、Cassandra、Impala

2、批处理计算:Hadoop MapRece、Spark

3、流式计算:Storm、Spark Steaming

4、图计算:Giraph、GraphX

5、内存计算:Spark、Hana(SAP公司全内存式分布式数据库系统)、Dremel

应用领域

1、智慧医疗(临床数据、公共卫生数据、移动医疗健康数据)(共享疾病案例,基因分类参考)

2、智慧农业(主要指依据商业需求进行农产品生产,降低菜残伤农概率)

3、金融行业:

精准的营销:根据可与习惯进行推销

风险管控:根据用户的交易流水实施反欺诈

决策支持:抵押贷款这一块,实施产业信贷的风险控制。

效率提升:加快内部数据处理。

产品设计:根据客户的投资行为设计满足客户需求的金融产品。

4、零售行业(对零售商来说:精准营销(降低营销成本,扩大营销额);对厂商:降低产品过剩)

5、电子商务行业

6、电子政务


希望对您有所帮助!~

❼ 大数据正在引领一场营销变革

大数据正在引领一场营销变革
短短十数年,大数据、物联网、云存储、移动互联从趋势成为主流,商业生态早已迈过无数个可能,进入了今天飞速发展的快车道。大数据产业已渐趋成熟,亟待被各行各业所运用。小米数据产品总监刘洋在易观智库学术沙龙交流会上表示,随着大数据概念越来越清晰,运用产品类型的形式在数据当中应用将会越来越多。
大数据规模日趋庞大
所谓的大数据技术,就是从各种类型的数据中,采用新处理模式快速获得有价值的信息,从而实现深度理解、敏锐发现与精准决策。随着互联网+影响力的不断深入,人们的生产和生活方式发生了极大的改变。新一代信息技术与经济社会各领域的深度融合,引发了数据量的爆发式增长,使得数据资源成为国家重要的战略资源和核心创新要素。
据统计,全球所掌握的数据,每18个月就会翻倍。到2020年,全球的数据量将达到40ZB,其中我国所掌握的数据将占20%。
利用大数据分析,能够总结经验、发现规律、预测趋势、辅助决策,充分释放和利用海量数据资源中蕴含的巨大价值。大数据冲击传统市场,渗入更多的企业成为趋势。
据了解,2015年全球大数据产业规模达到了1403亿美元。预计到2020年,这一数据将达到10270亿美元。其中,2020年中国大数据产业规模或达13626亿元。
百分点产品市场总监、中关村(000931,股吧)大数据交易产业联盟副秘书长张涵诚向《中国产经新闻》等媒体表示,从卖产品转变为卖服务,服从管理转为创造客户价值,互联网核心思维是数据思维,是大数据冲击传统市场的三方面表现。
同时,随着数据资源的开放及使用逐步深入,应用创新成了大数据发展的主要驱动力。目前就传统的企业而言,已经将数据分析、数据资源作为一种新的业务,且投入程度可能强于传统的业务。
据相关数据分析显示,到2020年,中国大数据产业细分市场规模中,应用层规模占比将达到40%,衍生层规模占比达18.5%。
另外,按照行业来划分,未来大数据应用预计将以政府和金融为主,预计2020年政府和金融大数据应用或将占60%,随后是工业以及电力应用。
大数据是一种技术,一种思维的创新,也是数据本身价值的发掘。大数据时代,很多企业已经以数据化运营来驱动企业重大战略决策和业务发展,获得了卓越的成绩,成为行业里数据化运营的领先者。
刘洋在会上解说了数据驱动的两种模式,即分析决策和应用产品。其中分析决策包括战略分析、竞争分析以及商业分析。他表示,市面上大部分企业在做商业分析之前往往忽略了先做战略分析和竞争分析。
而所谓产品应用,刘洋表示,是与产品相关的数据,把这类数据包装成行业的内容或者是服务,提供给用户。
不仅如此,利用产品跟用户建立关系,利用数据发现规律从而驱动产品创新,也是一个非常好大数据的应用。张涵诚认为,这将能够实时了解用户需求,并及时对服务做出迎合客户群的调整,以赢得更大的市场占比。
电商平台没有评论,意味着转化率的降低、客单的下降。个性化的推荐,需要一个推荐引擎了解消费者的偏好、行为习惯,帮助他推荐一款产品。利用大数据可以洞察消费者的建议,对产品的看法,通过迅速做反馈,可以创造更大的营销。
大数据基因植入传统企业,还会使一些企业成为平台型的企业。张涵诚表示,有了数据以后,企业可以无限地延伸,采购大量的数据可以跟供应商更多做集成。例如,生产数据服务将会有更多的订单,销售渠道数据将同行商品放在平台上卖。
完善大数据体系建设
对制造业企业而言,大数据技术的战略意义不仅在于掌握庞大的数据信息,更在于对数据的“加工能力”——对大量的数据进行专业化的处理,使之转化成为对企业有用的信息。
虽然,很多企业已经意识到以数据驱动企业决策的价值,但是在“淘金”大数据过程中,仍然对思维架构、方式方法有些模糊不清。尤其是当企业IT部门面对瞬息万变的业务要求,面对TB/PB级的海量大数据的实时分析,面对多维度复杂的数据分析时,常常束手无策。
数据处理的成本非常高,业务发展多元化的时候发现经常遇到一个问题就是数据不准。就目前行业发展情况来看,基本上大规模的公司相对多一些,小的开发者可能越来越艰难。在中大型的开发者越来越多的情况下,发现用户的需求已经脱离了原来老的模式,这就需要把自己的数据拿过来做分析,放到系统里面与CRM、销售系统、投放系统、运营系统做打通,做一个全盘分析。
“大数据分析分四个步骤,即数据应用、数据分析、数据存储和计算以及数据源。其中数据源主要是保证数据不脏。”刘洋说道。
大数据在业务中的分析流程大概分两种类型。一种是当我们有数据和数据分析系统时的监控,通过业务上线、数据的监控、异常数据的发现、异常状况处理的策略、业务改进,形成一个闭环模式。另一种是产品要上新的功能,通过业务上线、效果评估、改进策略、业务改进、效果评估来形成闭环模式。
而就大数据团队架构,分为分散式和中心式。相较于分散式大数据团队的高成本、灵活、难管理特点,中心式的大数据团队的特点则是低成本、易管理、低效率。
分散式的大数据团队,因为每个业务都比较庞大,业务与业务之间的耦合度较低,需要灵活、快速的数据支撑,大型的数据平台无法满足快速变化的业务要求,于是业务会自建平台和分析人员。
仅中心式的大数据团队而言,各个业务有一些区分度,但是区别不大,于是公司会采用统一的数据树立部门,对所有的业务进行数据分析的支撑。
目前,形形色色的大数据已然成为了各领域发展的新宠。伴随技术的发展,大数据正在引领一场营销变革。大数据的存在让营销者能更好地、更实时地对消费者画像并实现无限的消费者细分。大数据强大的分析、挖掘、整合能力让营销变得简单起来。

阅读全文

与广州淘金人大数据是做什么的相关的资料

热点内容
linuxversionh 浏览:728
编程为什么学觉得有什么好处 浏览:96
公众号打包网页发布找不到文件 浏览:522
qq头像90后一男一女 浏览:92
proteus中如何单片机编程 浏览:26
excel打开如何显示文件名称 浏览:400
为什么手机上不能打开excel文件 浏览:688
libsvmmatlab代码 浏览:332
前端显示文件流的图片 浏览:20
苏州哪里可以学机械编程 浏览:974
加固数据线怎么修 浏览:342
镜像文件游戏怎么安装 浏览:388
java构建函数 浏览:257
excel文件房屋信息 浏览:629
迷你编程更新为什么领不了皮肤 浏览:503
微信公共账号登录入口 浏览:820
蝴蝶钱包app 浏览:681
联通查询账号密码修改 浏览:774
文件头线到上纸边距离是多少 浏览:36
苹果手机怎样备份文件在哪里 浏览:425

友情链接