1. 浅议大数据时代如何加强税收风险管理
内容提要:“大数据”时代的到来,为税收风险管理提供了新机遇,带来了新挑战。本文在分析大数据为税收风险管理提供契机的基础上,结合基层税务机关工作实践,尝试提出相应的税收风险管理策略和建议,提升风险管理水平。
关键字:大数据,税收风险管理
税收风险管理是提升税收征管质量、提高纳税人税收遵从度的重要手段,“大数据含顷”时谈局陆代的到来又为税收风险管理提出了新的要求,如何运用大数据提升税收风险管理水平,是新形势下基层税务机关面临的巨大挑战。
一、大数据时代的税收风险应对的机遇与挑战
(一)涉税数据规模大,速度呈现跳跃性增长。大数据时代的进步,给税务管理以信息管税带来了前所未有的机遇:现成的网络资源和真实的数据基础。“信息管税”,内涵要求是管住信息,没有信息谈何信息管税。2011年地税就实现了征管数据的全国大集中,标志已经步入了“数据驱动决策方法”的大数据时代,据统计,“金税三期”工程在全国推行后,数据量和业务量将会极大地增长,数据规模的增长速度也会呈跳跃性增长。
(二)涉税信息采集和掌握比较困难。大数据时代的进步,给税务管理以信息管税带来的挑战也是前所未有的,理论上客观存在的这些涉税信息,税务系统是既看不着,也摸不着。面对这突变发展的大数据时代,由于落后的税务征管信息系统背离大数据时代互通特征与现实应用的网络资源脱节腊拆,所以征管系统现存的数据就不可能做到完整、真实、准确。而由于不重视文明、进步社会管理的基本理理念,至今尚未开展税源信息标准化的基础工作,致使社会税源信息五花八门,其产生只能将就各市场主体自身业务推进的需要,不能满足税源信息采集的需要,进入大数据时代就如何采集和掌握现实税源信息成了信息管理最大的难题。
二、大数据时代下基层税务机关税收风险管理现状
(一)税收风险管理专业人才匮乏。在大数据时代中,税收风险管理要通过建立风险监控模型,来进行预测分析。特别是面对海量的数据,监控模型能左右着税收风险管理的成败。能建立或者组织建立风险监控模型的人才首先要有专业的税收业务知识、要熟练掌握税收应用系统、要有大数据的理念、熟悉数据的来源和构成,同时还要有创新意识和奉献精神。在基层税务机关,这种风险管理领域的专业人才少,导致工作实绩不明显。
(二)数据获取不全面。风险管理必须依靠大量正确的数据信息,金税三期的推行,解决了内部数据获取的问题,但是,纳税人的生产经营信息、财务信息以及第三方信息的获取渠道仍然有限。基层税务机关无法像总局大企业司的全流程风险监控那样获取信息,外部涉税信息主要来源于自行报送,获取信息的范围狭窄、渠道少且不准确。一些对风险分析至关重要的物流、资金流信息数据无法取得。同时,金税三期等含有无效甚至垃圾数据,严重影响了风险监控的准确性。
(三)思想认识上有偏差。风险管理的基础是信息的采集,也就是对数据的处理。在基层税务机关,多数人认为税收数据是信息中心的活。因此,把数据管理也看成了技术活,一方面觉得事不关己高高挂起,另一方面会认为数据管理高深莫测的,遥不可及。其实数据是业务载体和表现形式,是决定风险管理质量的基础和关键所在。
(四)涉税数据更新不及时。税务管理包括税务登记、纳税申报、税款征收、发票管理、纳税评估、税务稽查等产生的涉税信息资源,构成了税务机关征管系统的主体数据。由于采集方式多以手工录入为主,数据在质量上,特别是在完整性、准确性、规范性、逻辑性等方面,依然难以满足税收风险管理的需要。另外,不同纳税人的名称、生产经营地、法人、财务负责人、经营范围经常变化,使税务机关征管系统的数据很难做到随时更新,也给税收风险管理带来难题。
(五)数据分析技术能力有待提高。在基层税务机关,绝大多数的数据分析仍停留在简单的查询和比对层面,缺乏行之有效的数据分析工具,使大量沉积在业务操作层的数据尚未有效转换为管理决策层所需要的信息,即使是纳税人提供的网上申报数据和财务报表数据电子信息,也难以实现所有信息的全面自动读取、分类加工。税务机关难以对这些数据进行深层次的分析,获得更有价值的信息,对数据所反映出的税收风险、经济内涵进行分析监控乏力,没有建立税收与相关经济数据之间的关联模型,难以对现有数据进行数理统计和趋势预测分析,不能为管理决策提供科学、有效的信息支撑。
三、税收风险管理适应大数据时代发展的建议与对策
(一)强化以数治税理念。将该理念贯穿于税收征管改革和体系建设的全过程,引导基层税务干部正确理解大数据的核心理念,培养大数据的思维方式,自觉运用大数据查找风险疑点,开展风险排查和应对,营造用数据管理、用数据决策、用数据创新的风险管理氛围。强化税收风险共治理念。立足工作实际,以科学有效的税收风险共治平台为支撑,持续推进税务部门、纳税人、政府部门、社会组织在税收风险管理上的深度合作和协同治理,构 建党 政领导、税务主责、部门合作、社会协同、公众参与的税收风险共治模式,实现部门之间数据信息的开放共享、互联互通和深度应用,形成风险管理合力。
(二)建立良性的风险监管工作机制。基层税务机关可以建立本地区专门的风险监控管理机构。并且明确各岗位的职责权限:税源管理和纳税服务部门在变管户为管事的基础上,深化纳税服务,同时提供个性化的纳税服务,比如建立对话、帮助签订税收遵从协议等。风险监控部门可以看成是既有税收业务知识和一定数据管理水平的成员组成的本地区团队,负责数据管理、设计并更新维护本地区风险监控指标、对税收风险进行分析识别、向相关部门进行风险推送。纳税评估部门接收推送过来的风险任务、采取纳税评估或者税务审计等手段进行风险应对、同时将风险应对结果向相关部门推送。综合业务部门在执行税收政策的同时,审核风险应对结果,同时向风控部门推送风险应对的审核结果,为其更新和完善风险监控指标提供依据,由此形成了一个协调配合、联动监督、良性互动的闭环工作模式。
(三)建立以风险管理为导向的扁平化立体式征管模式。为积极应对大数据时代给税收风险管理带来的挑战,应进一步明确职能,规范流程,建立上下联动、横向互动的两级任务中心,形成扁平化立体式征管模式,以适应税收风险管理工作的开展。同时,按照纳税人的“规模或行业+征管事项分类”的原则,结合税源结构特点设置与风险管理相适应的税源管理机构,形成事项分类管理、风险专门应对,科学化、专业化、精细化更加突出的征管模式。通过征管模式的重构,形成市局、基层局相互呼应、互为依托、相互补充、共同提升的工作模式,继续提升大数据时代地税部门的工作质效。
(四)提升数据采集和应用能力。税收大数据是税务部门最核心和关键的征管资源。为了不断提升税务机关的核心竞争力,必须加强对税收大数据的交换共享、智能比对和逻辑相关分析,拓宽采集渠道,全面获取各方各类涉税信息。对地税内部、外部海量涉税数据信息进行全面归集采集、整合加工,实现“信息+数据”增值应用,着力突破征纳双方信息不对称的管理瓶颈,有效促进纳税遵从和管理增效。在信息采集方面,一是继续做好政府部门涉税信息采集工作。充分发挥《江西省地方税收保障条例》的作用,继续争取政府和相关职能部门的大力支持,发挥跨部门信息交换和共享平台作用,形成跨部门协同治理格局,全面准确及时地获取涉税信息,形成全面实时、动态化的税源监控网络,有效加强地方税收征管。二是继续加强互联网涉税信息的采集力度。充分利用互联网海量资源,甄别、采集、整合上市公司中涉及企业的有效数据,为税收管理提供数据基础。
(五)多措并举,不断提升数据应用的有效性。一是规范数据质量管理。严格规范纳税人的财务报表、基本资料等基础数据信息,把好数据入口关、校验关;
同时,对通过风险管理发现的数据质量问题进行跟踪管理,确保错误数据及时得到更正;
注重发挥纳税辅导提示、服务作用,提醒纳税人重视数据质量并及时更正错误数据。二是做好数据整合应用。其一,实现税务系统内部信息的有机整合和结构化存储。对税收征管主体软件、发票系统、风险管理等各系统中的涉税信息,第三方渠道采集的各类信息,以及税务人员在实地巡查、约谈、评估、稽查中获取的各类信息,进行有机整合和一户式归集,建立起统一规范的纳税人数据仓库,在各级税务机关、各税种管理部门、前台服务人员之间,按照职能权限实行信息开放和增值应用。其二,加强内外部数据的合作应用。对内,加强市局各业务处的合作,共同探讨信息分析应用途径;
积极征求基层局意见建议,了解信息的有效性、针对性,通过信息分析方与应用方的对接,形成数据采集、整理、运用的良性互动,进一步提升信息应用效率。对外,加强与国税、财政等部门的合作,对获取的数据进行综合分析,共同应用,互利共赢,共同提升信息应用水平。
(六)建立人才培养机制,打造专业税收风险分析管理团队。以风险分析、应对纳税、调整账务处理、计算机操作技能和评估约谈技巧等为主要内容,组织开展风险管理能力培训,激发干部业务学习活力;
要优化组合,合理配备资源,使得人尽其才。逐步建立一支综合素质高、专业技能强的专业化风险管理团队。加强风险管理队伍建设。结合“数字人事”和个人绩效管理,将管、考、训、用有效统一, 围绕打造风险管理专业团队的目标加强业务培训,面向风险管理人员定期考核,优化激励机制,重视工作实绩,促进风险管理人员自觉学习业务、钻研业务,不断提高风险管理能力和水平。
参考文献
(1)彭骥鸣曹永旭 韩晓琴 《大数据时代税源专业化管理面临的机遇与挑战》,《税收经济研究》,2013年6期
(2)林伟胜 许卓伟 《大数据时代信息系统建设的一些思考》,《信息与电脑》,2013年1期
(3)阿里2014财年数据,2014
(4)赵国栋 《大数据时代的三大发展趋势》,高科技与产业化,2013
(5)孙开沈昱池 《大数据,构建现代税收征管体系的推进器》,《税务研究》,2015年1期
(6)刘畅 《大数据背景下需改革税收征管模式》,《税收征纳》2014年12期
2. 大学生怎么运用大数据建设社会主义
一、大数据及其特点
大数据目前尚无明确定义。维基网络对大数据的定义是:大数据是指所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到截取、管理、处理并整理成为帮助企业经营决策更积极目的的信息【1】。徐子沛在《大数据》一书中将大数据定义为:指那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据【2】。《大数据时代》的作者维克·托迈尔·舍恩伯格认为,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的。大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”【3】8-9《人民日报》在采访他时,他曾说:“在我看来,大数据是一种价值观、方法论,我们面临的不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。这是一场思维的大变革,更是一个互动的过程——你可以用不同的角度、不同的方式去做大数据,并得到不一样的结果与好处。”【4】据此,笔者认为:大数据是大规模数据中,可以通过有效技术手段快速获取、存储、管理并分析出可以推动社会发展的有价值的数据。
目前普遍认可大数据的四个基本特征,即4V特性:规模大(Volume)、来源广泛且类型多样(Variety)、获取及处理速度快(Velocity)、价值密度低(Value)。
数据规模大(Volume)。现代意义上的“数据”,范畴比信息还要大。进入信息时代,“数据”二字的内涵开始扩大:不仅指代“有根据的数字”,还统指一切保存在电脑中的信息,包括文本、图片、视频等。数据也逐渐成为“数字、文本、图片、视频”等的统称,也即“信息”的代名词。【6】256-257
数据来源广泛、类型多样(Variety)。信息时代,数据的获取途径不仅限于计算,还包括大记录,即人们通过手机、个人电脑、ipad等终端上传到网络的海量数据以及个人存储在手机、个人电脑等终端中的数据。数据的类型也不再局限于原始的计算数据、结构化数据,还包括人们在日常生活中随手记录、保存、上传至网络平台的图片、音频、视频等非结构化数据。
数据获取及处理速度快(Velocity)。数据来源的多样化致使数据日益公开化、社会化,数据获取更为方便、快捷、全面。伴随大数据发展而诞生的数据处理技术使得数据处理速度远远快于传统数据时代,数据处理日益规模化、软件化、智能化。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比,大数据本身的价值密度是相对较低的,需要对海量的数据进行挖掘分析才能得到真正有用的信息,形成用户价值。【5】基于海量数据基础上形成的某一领域或某一特定内容形成的信息,相关性更强、信息更为全面,效果更佳明显,价值高于传统小数据分析得出的结论。
二、依托大数据推动社会主义核心价值观建设的重要性
大数据已经融入到大学生日常生活中,大学生学习、生活、工作无处不体现大数据。一方面,大学生通过互联网获取学习资料、娱乐资讯、工作模板,成为大数据的享用者;另一方面,大学生搜索、下载学习资料留下数据痕迹,在微博等社交网络平台发表状态、上传生活照片以及工作过程中通过网络发布通知、活动内容,成为大数据的贡献者。大数据与大学生息息相关,透过大学生可以了解学生的思想动态,亦可推动社会主义核心价值观建设。
(一)大数据为社会主义核心价值观建设提供良好的环境。
徐子沛在《数据之巅:大数据革命,历史、现实与未来》中提到一个案例:2013年7月,有报道称,华东师范大学的一位女生收到校方的短信:“同学你好,发现你上个月餐饮消费较少,不知是否有经济困难?”这条温暖的短信也要归功于数据挖掘:校方通过挖掘校园饭卡的消费数据,发现其每顿的餐费都偏低,于是发出了关心的询问,但随后发现这是一个美丽的错误——该女生其实是在减肥。【6】275这个案例说明可以通过大数据了解实时了解学生状态,在当前东西方价值观激烈碰撞的环境下,通过分析数据可以了解并掌握学生思想动态,做到早发现、早处理,对于为社会主义核心价值观建设提供良好的环境有极为重要的意义。
(二)大数据为社会主义核心价值观建设提供更为行之有效的方法。
价值观教育并非一成不变、形式单一,目前高校社会主义核心价值观教育方式主要有课堂教学、主题班会、高校讲座、社会实践以及网络自主获取等形式。那么,这些方式哪些是学生更喜闻乐见、接受主动性更强的方式?有没有尚未发掘的、学生潜意识中更易于接受的价值观教育方式?以课堂教学为例,学生是更倾向于教师讲课学生听的形式还是互动教学形式?如果把视频教学纳入到课堂教学中,那么视频内容是什么样的,多长的视频最优化,以何种形式展现,等等,都是值得探讨的问题。问卷调查、抽样调查等方式获取的数据量小、不够全面、不完全具有代表性,且学生填写调查问卷具有自我意识,问卷结果未必是学生真实想法。大数据是通过高校大学生在网络上发布海量资讯中获取,如学生通过QQ、微信、飞信等沟通软件,人人网、新浪微博、大学生在线等网络社交平台以及邮箱、Dropbox等数据共享平台发布的数据。数据更公开、更广泛、更全面、更真实,通过分析得出的结论更具有说服力。通过分析高校大学生思想动态大数据,可以全面、时时了解学生接受价值观教育的趋向性方式。依据不同年级、不同专业、不同高校学生特点,采用不同形式进行价值观教育,真正做到“因材施教”。
(三)大数据有效掌握高校社会主义核心价值观建设动态情况。
社会主义核心价值观建设是一项艰巨的长期工程,其过程具有动态性、延展性,需要提前、时时把握价值观建设状态、发展动态、发展趋势,随时调整价值观建设的方法、形式、重点。基于网络数据的信息挖掘,不需要逐一调查,成本低廉,更重要的是,这种分析是实时的,没有滞后性【6】268。
三、依托大数据推动社会主义核心价值观建设的途径
(一)树立大数据观念
大数据绝不仅仅是科研的高端产品,大数据存在于我们的日常生活中。沃尔玛通过数据挖掘发现顾客潜在意识——父亲在买尿布时往往会顺便买啤酒——捆绑“啤酒和尿布”提高销量;亚马逊通过数据挖掘——分析顾客的购买规律——“预判发货”,即在网购时,顾客还没有下单,亚马逊就将包裹寄出;奈飞公司利用客户的网上点击记录,预测其喜欢观看的内容,实现精准营销。
在高校中,数据和数据分析的价值更是随处可以得到体现,高校思想政治教育工作已经具备了大数据的特征【7】。建设核心价值观,充分发挥大数据的价值,需要高校学生工作者强化大数据意识,提高对数据的敏感意识、前瞻意识,培养数据共享意识、动态意识,数据不是一成不变的,要不断接受新数据、挖掘新信息。根据对数据的分析,个性化推动社会主义核心价值观建设。
(二)建立大数据库
数据是大数据时代社会主义核心价值观建设的基础。建立大数据库的方式有两种:对内,汇总校园内通过高校信息网络中心的数据及学生在各平台发布的信息;对外,搜集政府、社会发布的与核心价值观建设相关的信息。学校电子网络信息、学生交流使用的网络电子平台、校园各单位为方便服务管理而统计保存的各种信息汇总以及校园安全服务网络使用的摄像头、门禁器等产生的信息数据。
(三)培养大数据工作队伍
光有数据没有分析人才,那么数据永远只是一堆数字,没有任何价值。大数据价值密度低的特点要求数据分析者设计能完成特定任务的软件或程序,智能分析海量数据。高校社会主义核心价值观建设工作人员主要以高校学生工作处、思政教师及辅导员为主,需要在这批人员中培养一批思想政治觉悟高、政治理论水平高人员专门从事该项事务,提高他们的大数据意识和大数据处理能力,适应大数据时代社会对大学生数据能力的需求。
3. 《大数据产业发展规划(2016-2020年)》指导思想与目标——斜杆第二步(9)
数据是国家基础性战略资源,是21世纪的“钻石矿”。...,实施国家大数据战略,落实国务院《促进大数据发展行动纲要》,按照《国民经济和社会发展第十三个五年规划纲要》的总体部署,编制本规划。
一、我国发展大数据产业的基础
大数据产业指以数据生产、采集、存储、加工、分析、服务为主的相关经济活动,包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务。
个人理解:大数据产业的界定
信息化积累了丰富的数据资源。
我国信息化发展水平日益提高,对数据资源的采集、挖掘和应用水平不断深化。政务信息化水平不断提升,全国面向公众的政府网站达8.4万个。智慧城市建设全面展开,“十二五”期间近300个城市进行了智慧城市试点。两化融合发展进程不断深入,正进入向纵深发展的新阶段。信息消费蓬勃发展,网民数量超过7亿,移动电话用户规模已经突破13亿,均居世界第一。月度户均移动互联网接入流量达835M。政府部门、互联网企业、大型集团企业积累沉淀了大量的数据资源。我国已成为产生和积累数据量最大、数据类型最丰富的国家之一。
个人理解:这些指标是信息化关注的指标,可供参考;智慧城市有哪些,可进一步了解
大数据技术创新取得明显突破。
个人理解:主要体现在软硬件方面,在平台建设方面,在智能分析方面,在开源技术方面。
大数据应用推进势头良好。
个人理解:大数据在互联网服务中提升网络社交、电商、广告、搜索等服务的个性化和智能化水平,催生共享经济等数据驱动的新兴业态;大数据加速向传统产业渗透,
大数据产业体系初具雏形
个人理解:表现在信息产业收入、大型数据中心、跨地区经营互联网数据中心(IDC)业务、云计算服务逐渐成熟。在大数据资源建设、大数据技术、大数据应用领域涌现出一批 新模式和新业态 。龙头企业引领,上下游企业互动的 产业格局 初步形成。基于大数据的 创新创业 日趋活跃,大数据技术、产业与服务成为社会资本投入的热点。
大数据产业支撑能力日益增强。
形成了大数据标准化工作机制,大数据标准体系初步形成,开展了大数据技术、交易、开放共享、工业大数据等国家标准的研制工作,部分标准在北京、上海、贵阳开展了试点示范。一批大数据技术研发实验室、工程中心、企业技术中心、产业创新平台、产业联盟、投资基金等形式的产业支撑平台相继建成。大数据安全保障体系和法律法规不断完善。
个人理解:大数据标准化工作机制(是什么),大数据标准体系,产业支撑平台
三、指导思想和发展目标
(一)指导思想
全面贯彻党的十八大和十八届三中、四中、五中、六中全会精神,坚持创新、协调、绿色、开放、共享的发展理念,围绕实施国家大数据战略,以强化大数据产业创新发展能力为核心,以推动数据开放与共享、加强技术产品研发、深化应用创新为重点,以完善发展环境和提升安全保障能力为支撑,打造数据、技术、应用与安全协同发展的自主产业生态体系,全面提升我国大数据的资源掌控能力、技术支撑能力和价值挖掘能力,加快建设数据强国,有力支撑制造强国和网络强国建设。
个人理解:精神,理念,围绕战略,目标,重点,切入点,预期效果
(二)发展原则
创新驱动 。瞄准大数据技术发展前沿领域,强化创新能力,提高创新层次,以企业为主体集中攻克大数据关键技术,加快产品研发,发展壮大新兴大数据服务业态,加强大数据技术、应用和商业模式的协同创新,培育市场化、网络化的创新生态。
个人理解:技术前沿,创新;大数据服务业态,创新生态;
应用引领 。发挥我国市场规模大、应用需求旺的优势,以国家战略、人民需要、市场需求为牵引,加快大数据技术产品研发和在各行业、各领域的应用,促进跨行业、跨领域、跨地域大数据应用,形成良性互动的产业发展格局。
个人理解:跨行业、跨领域、跨地域大数据应用,形成良性互动的产业发展格局
开放共享。
统筹协调。
安全规范。
(三)发展目标
到2020年,技术先进、应用繁荣、保障有力的大数据产业体系基本形成。大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右,加快建设数据强国,为实现制造强国和网络强国提供强大的产业支撑。
个人理解:这些指标体系,值得了解;大数据产业体系
—— 技术产品先进可控。
—— 应用能力显著增强。
—— 生态体系繁荣发展。
—— 支撑能力不断增强。
—— 数据安全保障有力。
4. 有谁知道大数据指的是什么
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1.随机查询动态报表
2.掌握指标管理
3.随时线上分析处理
4.视觉化之企业仪表版
5.协助预测规划
导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
2.降低整体营运成本(Power the Bottom Line):BIS改善企业的资讯取得能力,大幅降低IT人员撰写程式、Poweruser制作报表的时间与人力成本,而弹性的模组设计介面,完全不需撰写程式的特色也让日后的维护成本大幅降低。
3.协同组织目标与行动(Achieve a Fully Coordinated Organization):BIS加强企业的资讯传播能力,消除资讯需求者与IT人员之间的认知差距,并可让更多人获得更有意义的资讯。全面改善企业之体质,使组织内的每个人目标一致、齐心协力。
商业智能领域的技术应用
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管理
6.生产管理
7.销售管理
8.行销管理
商业智能实施步骤
商业智能系统处理流程[1]
商业智能(BI)作为一个概念,描述与业务紧密结合,并且根据需要进行相关特性展示和数据处理的过程。
为了让数据“活”起来,往往需要利用数据仓库、数据挖掘、报表设计与展示、联机在线分析(OLAP)等技术。数据或者数据源包含的种类繁多,例如存储在关系型数据库中的,在外围数据文件中的,在业务流中实时产生存储在内存中的等等。而商业智能最终能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。
这些分析有财务管理、点击流分析(Clickstream)、供应链管理、关键绩效指标(Key Performance Indicators, KPI)、客户分析等。商业智能关注的是,从各种渠道(软件,系统,人,等等)发掘可执行的战略信息。商业智能用的工具有抽取(Extraction)、转换(Transformation)和加载(Load)软件(搜集数据,建立标准的数据结构,然后把这些数据存在另外的数据库中)、数据挖掘和在线分析(Online Analytical Processing,允许用户容易地从多个角度选取和察看数据)等 。
商业智能系统的功能
商业智能系统应具有的主要功能:
数据仓库:高效的数据存储和访问方式。提供结构化和非结构化的数据存储,容量大,运行稳定,维护成本低,支持元数据管理,支持多种结构,例如中心式数据仓库,分布式数据仓库等。存储介质能够支持近线式和二级存储器。能够很好的支持现阶段容灾和备份方案。
数据ETL:数据ETL支持多平台、多数据存储格式(多数据源,多格式数据文件,多维数据库等)的数据组织,要求能自动化根据描述或者规则进行数据查找和理解。减少海量、复杂数据与全局决策数据之间的差距。帮助形成支撑决策要求的参考内容。
数据统计输出(报表):报表能快速的完成数据统计的设计和展示,其中包括了统计数据表样式和统计图展示,可以很好的输出给其他应用程序或者Html形式表现和保存。对于自定义设计部分要提供简单易用的设计方案,支持灵活的数据填报和针对非技术人员设计的解决方案。能自动化完成输出内容的发布。
分析功能:可以通过业务规则形成分析内容,并且展示样式丰富,具有一定的交互要求,例如预警或者趋势分析等。要支持多维度的联机在线分析(OLAP分析),实现维度变化、旋转、数据切片和数据钻取等。帮助决策做出正确的判断。
典型的商业智能系统
典型的商业智能系统有:
客户分析系统、菜篮分析系统、反洗钱系统、反诈骗系统、客户联络分析系统、市场细分系统、信用计分系统、产品收益系统、库存运作系统以及与商业风险相关的应用系统等。
[编辑]商业智能解决方案厂商
提供商业智能解决方案的著名IT厂商包括微软、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最后,希望你关注一下FineBI,帆软软件的大数据解决方案,我看了,还是很不错的
5. 大数据产业发展明确四大重点
大数据产业发展明确四大重点
在23日召开的首届数字中国建设峰会分论坛上,一系列关于促进大数据和数字经济发展的新政出炉,加快发展数字经济的路线图更加明晰。
在大数据分论坛上,工业和信息化部副部长陈肇雄提出推进大数据发展的四大重点方向。一是推动大数据创新发展,支持前沿技术创新,加快关键产品研发,推进大数据与云计算的深度融合,促进产学研深度融合,造就一批明星企业和人才。二是推动大数据融合发展,深挖融合潜力,加快工业互联网、工业大数据建设,培育数据驱动发展新模式、新业态。三是激发市场活力,鼓励建立大数据公共服务平台,鼓励中小企业深挖细分市场,积极参与数据安全建设,推动大数据企业的国际化发展。四是推动大数据安全发展、强化保障能力,加强大数据安防产品开发,维护数据的可靠性,构建安全保障体系,建立高效的数据安全管理机制。
其中,加快布局工业互联网成为推动数字经济发展的重要途径。在当日举行的数字经济分论坛上,工业和信息化部信息化和软件服务业司副司长李冠宇提出,在推进工业互联网平台发展方面,将加强顶层设计,并将制定出台《工业互联网平台建设和推广工程实施指南》,统筹推动平台培育、企业上云、百万工业APP培育等重点工作。此外还将制定出台工业互联网平台评价指南,分期分批遴选10家跨行业跨领域工业互联网平台,鼓励地方支持行业骨干企业建设本区域本行业平台,形成一批面向特定行业独立运营的工业互联网平台。
在完善公共支撑体系方面,工信部将建立涵盖标准、监测分析、数据管理、质量管理与技术成果转化在内的公共支撑体系,营造开放、规范、诚信、安全的工业互联网平台发展环境。
数字经济既蕴含着巨大的发展机遇,也会带来潜在的风险。国家互联网信息办公室副局长张望在数字经济分论坛上指出,近年来,地下数据交易猖獗,“熔断”“幽灵”等安全漏洞频出,数据泄露和网络攻击事件频发,给个人隐私保护、企业安全生产、经济社会发展乃至国家安全都可能带来新的挑战。同时,数字经济对原有的行业秩序、利益格局和治理体系也会产生较大的冲击。
加强制度设计,提升数字经济监管能力和治理水平势在必行。张望指出,坚持包容与监管并重,支持与规范并行,逐步建立与新业态发展相适应的监管方式;完善反不正当竞争法和反垄断法,加快推动促进和规范数字经济发展的法律法规的立法进程,营造公平、有序、创新、活跃的数字经济市场环境;运用大数据、人工智能、区块链等技术,推进技术与管理并举的数字经济治理模式,提升数字经济领域态势感知、风险预警水平,提高风险防范能力,推动数据共享,促进协同治理,实现决策科学化、精准化,提升数字经济治理能力;推动制定跨境电商、市场准入、数据流动等国际贸易和投资新规则,推动共建网络空间命运共同体。
6. 大数据思维是哪四个
总体思维、容错思维、相关思维、智能思维。
大数据的4个明显的特征,即数据量大、多维度、完备性和在一些场景下的实时性。特别强调了光是数据量大还不能构成大数据,因为它可能无法得出有效的统计规律,而多维度的特征则可以交叉验证信息,提高准确性。
今天大部分人所理解的大数据,是从大量的、看似杂乱无章的数据点,总结出原来找不到的相关性。在这个过程中各种数据如同百川入海一般汇聚到一起。
7. 什么是大数据 大数据是什么意思
通俗来讲,大数据就是所有数据整合在一起,并且比以往数据库都要庞大的一个数据库。从学术上来讲,大数据就是在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,并且具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
(7)大数据四个强化是什么扩展阅读
大数据相关政策
经李克强总理签批,2015年9月,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),系统部署大数据发展工作。
《纲要》明确,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
《促进大数据发展行动纲要》部署三方面主要任务
1、加快政府数据开放共享,推动资源整合,提升治理能力。大力推动政府部门数据共享,稳步推动公共数据资源开放,统筹规划大数据基础设施建设,支持宏观调控科学化,推动政府治理精准化,推进商事服务便捷化,促进安全保障高效化,加快民生服务普惠化。
2、推动产业创新发展,培育新兴业态,助力经济转型。发展大数据在工业、新兴产业、农业农村等行业领域应用,推动大数据发展与科研创新有机结合,推进基础研究和核心技术攻关,形成大数据产品体系,完善大数据产业链。
3、强化安全保障,提高管理水平,促进健康发展。健全大数据安全保障体系,强化安全支撑。
参考资料来源:网络--大数据