⑴ 大数据时代下的三种存储架构
大数据时代下的三种存储架构_数据分析师考试
大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。
以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 数据结构都有哪些分类呢
集合。2.线性结构。3.树形结构。4.图状结构;
1.集合
树形结构是一层次的嵌套结构。 一个树形结构的外层和内层有相似的结构, 所以这种结构多可以递归的表示。经典数据结构中的各种树状图是一种典型的树形结构:一颗树可以简单的表示为根, 左子树, 右子树。 左子树和右子树又有自己的子树。
4.图状结构
图状结构,简称“图”,是一种复杂的数据结构。图状结构中,每个结点的前驱结点数和后续结点数可以任意多个。数据元素间的关系是任意的。其他数据结构(如树、线性表等)都有明确的条件限制,而图形结构中任意两个数据元素间均可相关联。
⑶ 数据结构主要包括哪些内容
1.数据结构一般包括以下三方面内容:
① 数据元素之间的逻辑关系,也称数据的逻辑结构(Logical Structure);
数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。
② 数据元素及其关系在计算机存储器内的表示,称为数据的存储结构(Storage Structure);
数据的存储结构是逻辑结构用计算机语言的实现(亦称为映象),它依赖于计算机语言。对机器语言而言,存储结构是具体的。一般,只在高级语言的层次上讨论存储结构。
③ 数据的运算,即对数据施加的操作。
数据的运算定义在数据的逻辑结构上,每种逻辑结构都有一个运算的集合。最常用的检索、插入、删除、更新、排序等运算实际上只是在抽象的数据上所施加的一系列抽象的操作。
所谓抽象的操作,是指我们只知道这些操作是"做什么",而无须考虑"如何做"。只有确定了存储结构之后,才考虑如何具体实现这些运算。
存储方式应该和存储结构一样的吧?··
⑷ 数据结构包括哪几种基本结构,各有什么特点
三种:
①
集合结构。特点:
集合中任何两个数据元素之间都没有逻辑关系,组织形式松散.
②
树形结构。特点:树形结构具有分支、层次特性,其形态有点象自然界中的树.
③图状结构。特点:图状结构中的结点按逻辑关系互相缠绕,任何两个结点都可以邻接。
非线性结构
传统文本(例如书籍中的文章和计算机的文本文件)都是线性结构,阅读是需要注意顺序阅读,而超文本则是一个非线性结构。在制作文本时,可将写作素材按内部联系划分成不同关系的单元,然后用制作工具将其组成一个网型结构。阅读时,不必按线性方式顺序往下读,而是有选择的阅读自己感兴趣的部分。
⑸ 数据结构哪些是四种常见的逻辑结构
数据结构四种常见的逻辑结构:
1、集合:数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;
2、线性结构:数据结构中的元素存在一对一的相互关系;
3、树形结构:数据结构中的元素存在一对多的相互关系;
4、图形结构:数据结构中的元素存在多对多的相互关系。
(5)网盘存储用什么数据结构最好扩展阅读
逻辑结构分为两种:
线性结构和非线性结构(集合、树、网)。
线性结构:有且只有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继。
例如:线性表,典型的线性表有:顺序表、链表、栈(顺序栈、链栈)和队列(顺序队列、链队列)。它们共同的特点就是数据之间的线性关系,除了头结点和尾结点之外,每个结点都有唯一的前驱和唯一的后继,也就是所谓的一对一的关系。
非线性结构:对应于线性结构,非线性结构也就是每个结点可以有不止一个直接前驱和直接后继。常见的非线性结构包括:树(二叉树)、图(网)等。
⑹ 数据结构的几种存储方式
数据的存储结构是数据结构的一个重要内容。在计算机中,数据的存储结构可以采取如下四中方法来表现。
1) 顺序存储方式
简单的说,顺序存储方式就是在一块连续的存储区域
一个接着一个的存放数据。顺序存储方式把逻辑上相连的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接挂安息来体现。顺序存储方式也称为顺序存储结构( sequential
storage structure ),一般采用数组或者结构数组来描述。
线性存储方式主要用于线性逻辑结构的数据存放,而对于图和树等非线性逻辑结构则不适用。
2) 链接存储方式
链接存储方式比较灵活,其不要求逻辑上相邻的结点
在物理位置上相邻,结点间的逻辑关系由附加的引用字段表示。一个结点的引用字段往往指导下一个结点的存放位置。
链接存储方式也称为链接式存储结构( Linked
Storage Structure ),一般在原数据项中增加应用类型来表示结点之间的位置关系。
3) 索引存储方式
索引存储方式是采用附加索引表的方式来存储结点信
息的一种存储方式。索引表由若干个索引项组成。索引存储方式中索引项的一般形式为:(关键字、地址)。其中,关键字是能够唯一标识一个结点的数据项。
索引存储方式还可以细分为如下两类:
* 稠密索引( Dense Index ) : 这种方式中每个结点在索引表中都有一个索引项。其中,索引项的地址指示结点所在的的存储位置;
* 稀疏索引( Spare Index ):这种方式中一组结点在索引表中只对应一个索引项。其中,索引项的地址指示一组结点的起始存储位置。
4) 散列存储方式
散列存储方式是根据结点的关键字直接计算出该结点
的存储地址的一种存储的方式。
在实际应用中,往往需要根据具体数据结构来决定采用哪一种存储方式。同一逻辑结构采用不同额存储方法,可以得到不同的存储结构。而且这四种节本存储方法,既可以单独使用,也可以组合起来对数据结构进行存储描述。
欢迎加入技术学习 QQ 群: 364595326
⑺ 数据的存储结构可以用什么和什么
数据的存储结构可以用集合、线性结构、树形结构和图形结构,具体如下:
(1)集合:数据结构中的元素之间除了“同属一个集合”的相互关系外,别无其他关系;
(2)线性结构:数据结构中的元素存在一对一的相互关系;
(3)树形结构:数据结构中的元素存在一对多的相互关系;
(4)图形结构:数据结构中的元素存在多对多的相互关系。
常用运算:
(1)检索。检索就是在数据结构里查找满足一定条件的节点。一般是给定一个某字段的值,找具有该字段值的节点。
(2)插入。往数据结构中增加新的节点。
(3)删除。把指定的结点从数据结构中去掉。
(4)更新。改变指定节点的一个或多个字段的值。
(5)排序。把节点按某种指定的顺序重新排列。例如递增或递减。
以上内容参考:网络-数据结构