Ⅰ 从支撑到决策 大数据实现企业商业价值
从支撑到决策:大数据实现企业商业价值
电子商务、社交媒体、移动互联网、物联网的兴起极大地改变了人们生活与工作的方式,它们给世界带来巨大变化的同时,也让一个大数据时代真正地到来。与传统数据相比,大数据主要体现在数据量庞大、数据类型丰富、数据来源广泛三个方面,大数据的这三大特征不仅仅悄然改变着企业IT基础架构,也促使了用户对数据与商业价值之间关系的再思考。
大数据所蕴含的价值
对于当今的企业而言,数据就是一种重要的战略资产,它就像新时代的石油一样,极富开采价值。如果能够看清大数据的价值并且迅速行动起来,那么在未来的商业竞争中占据会占得先机。事实上,美国奥巴马政府已经投资2亿美金启动了“大数据研究和发展计划”,从政府层面鼓励企业收集海量数据、分析萃取信息的能力。英特尔亚太研发有限公司总经理何京翔博士表示:“信息数据就是21世界的石油,石油只有经过开采、提炼最后变成汽油等化学品才能够体现出价值。大数据与石油一样,仅仅存储而不进行分析和处理是体现不出它的价值。”
图一:全球知名调研机构IDC公司 对全球数据增长以及数据类型分布情况的调研与预测。相对于传统的结构化数据,非结构化数据、内容数据的增长迅速,且蕴含了极大的价值。
任何企业都希望能够充分挖掘出像数据这种战略资源的价值,从而做出更为准确的商业决策。过去传统的商业智能局限在分析企业信息系统自身产生出来业务数据,这些数据大部分为数据库等结构化数据,而随着非结构化数据成为企业数据的主力军,传统商业智能的方式方法显然已经落伍。传统商业智能就犹如坐在自己车里,通过后视镜看后面发生的情况;而大数据分析则像是向前看的望远镜,用户通过望远镜能够看到未来可能会发生的情况。之所以会这样,是因为大数据分析是基于构化和非结构化数据的总和,在数据分析的全面性上是传统商业智能所不能比拟的,这意味着通过分析结构能够提供给企业更加全面和准确的商业洞察力。
图二:全球知名咨询机构麦肯锡对于不同行业所产生的数据类型的分析。麦肯锡全球研究所认为几乎所有行业正在大量产生非结构化数据。[page]
大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,其背后蕴含的商业价值不可低估,IDC就在其大数据相关报告中着重阐述了大数据的商业价值:行业领导企业与其他企业有着本质的区别,行业领导企业会积极将新的数据类型引入到数据分析之中,为商业决策做出更加准确的判断,那些没引入新的分析技术和新的数据类型的企业在未来是不可能成为行业领导者。这本质上其实是要求企业能够从思维的角度彻底颠覆过去的观点,大数据在未来企业中的角色绝对不是一个支撑者,而是在企业商业决策和商业价值的决策中扮演着重要的作用。
从支撑到决策
传统IT,从服务器、存储、网络、PC这些硬件设施,到CRM、ERP、PLM等应用软件,本质上是在对企业各个业务流程层面起到了支撑作用,虽然传统的商业智能分析能够对于企业的商业决策起到一定的作用,但是传统商业智能分析在当今这个大数据时代已经举步维艰。大数据的价值在于它能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。
图三:全球知名咨询机构麦肯锡对美国不同行业应用大数据技术潜在价值评估。
麦肯锡认为大数据正在为全球创造不可低估的商业价值。首先,大数据能够能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
事实上,大数据离我们并不遥远,现实生活中已经有很多活生生的案例,这些案例充分说明大数据对于未来的商业决策有着不可低估的作用。比如2011年,英国对冲基金Derwent Capital Markets花费4000万美金首次建立了基于社交网络的对冲基金。该基金通过对Twitter的数据内容来感知市场情绪,从而进行投资。美国加州大学河滨分校也在2012年公布了一项通过对Twitter消息进行分析从而预测股票涨跌的研究报告。
图四:英国对冲基金Derwent Capital Markets通过分析Twitter数据来预测股市的波动,该应用为典型的大数据应用,通过实时分析数据来获得更为准确的投资趋势。图中红线代表Tweets中“平静”数值;蓝线表示3天后的道指变化。在这两条线段重合的部分,“平静”指数预测了3天后道指收盘指数,从图中我们可以发现红、蓝两线经常走势相近。[page]
可以说,在IT日益渗透到企业和个人方方面面的今天,大数据将逐渐成为很多行业企业实现商业价值的最佳途径。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“毫无疑问,未来几年大数据会逐渐向更多行业发展,除了互联网和电信之外,其他像政府、金融、制造业都会开始有大数据的应用。”当然,可能还有人会质疑大数据的决策效果,但是不可否认的是大数据正在彻底改变商业决策的模式与方法,大数据是IT价值从企业业务支撑到企业决策转变的最好体现。
图五:美国德克萨斯大学《measuring the business impacts of effective data》报告,该报告认为数据使用率提升10%对行业人均产出的平均提升幅度有着重要影响,最为明显的就是零售行业,在零售行业数据使用率提升10%就能够使得人均产出提升49%,效果异常明显。
另外值得关注的是,企业的商业决策带有很强烈的行业特性,不同行业的企业对于大数据分析的需求并不相同,甚至由于不同行业的关系,这种需求可能是千差万别。这也就要求大数据解决方案不仅仅包括良好的数据分析能力,也需要包含很多行业的知识。IDC中国企业级系统与软件研究部高级研究经理周震刚就表示:“从传统概念来讲,大数据非常复杂,无法形成打包好的分析应用解决方案。不过在未来几年中,某个行业的应用会形成一个共性,厂商们会基于这个共性打包出一些大数据的解决方案推向这些行业用户。另外,会有更多的行业ISV会加入到大数据平台,基于这个大数据平台来开发应用。”从本质上来看,企业用户在商业决策中需要的是一个包含了灵活可靠的基础架构、功能强大的数据分析能力与经验丰富的行业分析能力的大数据综合性解决方案,仅仅依靠几套开源软件和设备是不能满足企业在商业决策上的长久需求,英特尔亚太研发有限公司总经理何京翔博士就表示:“大数据不仅仅是一个技术问题,英特尔认为大数据需要一个全面的大数据解决方案。英特尔在提供优秀的基础架构同时,还重点将Hadoop软件平台进行优化并提供软件服务,更加重要的是会针对分析工具和用户界面进行不同行业解决方案的定制。此外,英特尔也和众多行业ISV进行多角度、多方位的合作,从而构建出一个完善的大数据解决方案。”
从商业支撑到商业决策,大数据的商业魅力正在逐渐显现。在这个商业迅速信息化、社交化、移动化的时代,大数据必然会成为大部分行业用户商业价值实现的最佳捷径,我们需要做的就是认清本质、转变思路、未雨绸缪、运筹帷幄,在大数据时代中抓住无限商机。
Ⅱ 六个步骤 助你最大化大数据的商业价值
六个步骤:助你最大化大数据的商业价值
对于许多人们津津乐道的大数据企业或组织来说,通过大数据获取商业价值似乎总是如此容易:有了大数据,我们就能更深入地了解客户的行为,并运用这些知识来增加客户的满意度,从而提高企业的盈利能力。但说的容易做起来难,真正去让一个新兴企业来实现大数据价值时,一切往往变得捉襟见肘,但不管怎么说,回顾总结一些当下实用的大数据商业实践方法总归没错。实际上,最大化大数据的商业价值可以归结为将下述的六件事做好:
1.以商业思维为出发点:对于数据科学家们来说,运用Hadoop或其他先进的大数据分析工具畅游于数据知识的海洋中是在愉快不过的事了,不过如果不把分析的结果转化为可以应用于解决现实世界商业问题的东西,那么对于时间和资源则是巨大的浪费。与业务专家合作,了解改进过程中的机遇与挑战,将会是一个大数据项目成功与否的关键。专注于一个具体的商业问题将有助于识别有用的数据集,并针对化选择适合的技术与工具。与此同时,这样的过程能够促使你步步为营,对项目进行进一步推进。
2.把目光投向将理论付诸实践的途径上:要实现真正的商业价值,我们必须对理论分析的结果进行实际的运用。这听起来毫无疑问,但事实上有太多的大数据项目都会因为走不过这一关而从此尘封,将理论分析的结果纳入商业活动并使它们因此收益往往并非易事。有时,在实验室里看起来很美好的数据有可能是不可用的;而当你在商业活动中真正需要某项数据时,它也有可能变得过于昂贵。与此同时,一系列的行业法规也对数据的可用性产生巨大的影响。
3.使用最前沿的分析方法:商业智能与商业分析方法的创新正在改变企业从用户数据中获取价值的方式。新兴的数据分析平台也因此不再是像传统的描述性报告或历史记录仪表盘那样的周期性呈现,转而成为了一个能够不断分析传入的数据,提供指导意见,并且实时可操作的庞大系统。大数据的工具与基础设施使得当今的数据分析能够更加快捷简便地对机器学习方法进行应用,从而对包括各种各样结构化与非结构化数据类型的巨大数据集进行探索。
4.拥抱多样化的分析工具:R, Python, Hive, Groovy, Scala, MATLAB, SQL, SAS;哪个才是你的最爱?这个技术创新呈爆炸性发展的世界带给我们的副作用之一,便是常常需要学习一套新的分析工具。等着你最拿手的分析工具自己升级往往不是一个好的选项,领先的分析团队将不可避免地需要使用多个工具来支持他们的业务需求,所以最好的方法是去拥抱这样的多样性,构建一个灵活多样的技能储备,用于实现由不同工具构建的各种分析模型。在一个机械化生产的环境中,将多种类型的分析模型整合到一起往往十分困难。然而,已经有诸如FICO?决策管理平台这样的现代决策管理系统,通过可扩展包以及网络服务标准等渠道实现了对上述方案的简化。
5.利用云端和各类生产力平台:当今时代,进行大数据分析已经不再需要对昂贵的基础设施和特别的专业技能进行庞大的投资。通过在云端运行你的分析项目,你可以让一个专门的第三方处理底层系统和服务,而你专注于手头的业务问题。同时,你也可以把你所需要的能力和服务外包出去,这也许只会是实现项目的总成本中的一小部分。
6.为业务专家们留足操作的余地:这是最后也是最重要的一点。最大的商业价值往往来自于商务专家们一系列可以迅速转化为差异化战略的新见解,而它们有时也能显著提高客户与股东对你的满意程度。具有交互性和高度可视化的仪表板或报告可以更好地提供信息,从而帮助业务专家提出更科学有效的商业策略;标准的决策管理组件则可以使专家们更方便迅速地纳入新的分析模型,并以此洞察他们的业务规则和相关政策;而模拟和数据可视化则可以更好地探索新的商业模式和策略可能带来的潜在影响,使它们更容易被理解,从而加快它们的审批进程,使项目最终走向成功。
以上是小编为大家分享的关于六个步骤 助你最大化大数据的商业价值的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅲ 大数据挖掘商业价值的方法包括哪些
1、对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。
2、运内用大数据模拟实容境,发掘新的需求和提高投入的回报率。
3、提高大数据成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。
4、进行商业模式,产品和服务的创新。
Ⅳ 实现大数据商业价值的5个要点
实现大数据商业价值的5个要点
通常来说,以往的业务模式是基于历史数据来决定未来一到两年内的行为,但是现在则应该是基于过去几分钟内的数据来决定未来12到24分钟(甚至是秒)内的行动。在营销模式上,以往是基于过去数周或数月内的推广活动来预测特定人群对产品或者服务的偏好程度,而现在则是基于对客户个体行为的分析和实验来为其提供实时的定制化服务(通过各种用户界面,比如呼叫中心、网站、移动应用等)。可以想见,每个客户所接收到的东西都是独一无二的–一旦某客户接收到了特定的服务或者产品,该服务或产品就不会重复提供给另一个客户。这才是“大”的真正含义–大数据中的大生意。
对于数据分析人员、IT经理以及整个企业来说,对于大数据,有以下重要的考量和步骤:
·在准备行动之前,和管理层及客户进行充分的沟通,了解业界最新进展以及企业的真实需求
·基于大数据相关的新业务模式和新技术,积极推动企业战略的升级
·基于业务战略和模型,制定相应的数据战略和监管流程
·以可管理的模式来推进创新,比如较小的、短期的和可迭代的实验和探索,以此获得易评测和有意义的结果
·在探索过程中允许错误的发生。不断从失败中积累经验才能提高未来工作的成功率
无论出于什么原因,如果你或者你的公司还未认识到大数据的无穷潜力,Rick Smolan和Jennifer Erwitt的近著《The Human Face of Big Data》可能会对你有所帮助 -- 其中有句话这么说到:“在孩子出生的第一天,人类产生的数据量就相当于国会图书馆的70倍。”想想吧,这得有多少奥利奥饼干。
Ⅳ 大数据的商业价值实现关键在于连结
大数据的商业价值实现关键在于连结
我的英文主题的大数据的商业价值实现关系在于连结,但是在这个之前,我想跟大家分享一下前面阿里几位演讲嘉宾的评论我很受启发。
第一个大数据是相通的,数据本身并不本身任何的意义,只有在当他和一个他所表示的一个事情连结上以后,才能知道这个意义在哪里,或者价值在哪里。比如说有一种大数据对你来说就是一个大市场的表现,有一种大数据就是一个很大的人群,他们在你的平台上的行为,只有这么想了以后这个大数据才他对您真正的价值和意义有链接。
第二个我很受启发的,大数据在很多年前已经提出,那么他对你的意义如何?其实每个工业的形成,都有这样一条发展的路程,第一是由少数的人他们比较有远见,看到了一个很小的一个数据的能够被储存,能够被用来表达一个很复杂的现象,或者一个事物,从这个里面发挥了以后就逐渐进入一个新的商业应用的领域,这是当年的数据库计算机的发明和应用都是走了这样的路子,所以第一个是少数人的远见促进了这样一个形成。第二个进入科学阶段,有了科学之后这个事情就能不断的重复,而且可以有方法来证明,如果你是照着某一种进程来开展活动的话,你的结果是可以被预测。第三个部分就是进入工程的应用。我也很欣赏品觉一句话,真正的价值在于更多的人使用,只有一两个人能懂能使用这个价值不会很大。第四个部分跟我今天的主题有关,大数据的来源,为什么在今天不在一百年之前,或者在于电脑刚刚发展的时候,或者在于数据库,在几十年形成的时候,为什么这些数据不大呢,为什么今天的大就变得这么重要呢?主要的原因是一个网络。这个网络的形成,不是有了电脑就形成网络了,而且网络广泛的使用也是有很多的阶段。第一初级的网络是在企业内部的,电脑的使用的这个网络。第二部是英特网,把很多的公司很多子网络联在一起。
第三个是在网络上软件的开发,使得很多本来根本没有在网络硬件的基础上获取信息、交流信息以及传播信息今天都成为可能。所以,这一些网络的这个建设和网络的普遍应用成熟,使得大数据的产生有了今天的这样一个可能。
回到演讲。我今天要讲的主题是什么呢?再回到这个网络,大数据形成的本身,并不能保证他的大量的价值的实现,那么要实现这个价值,又得回到这个网络。举个比喻,中国现在汽车的发展这么迅速,很大的一个原因是在道路的开拓,有了很多的道路,这个汽车有地方可以车。但是如果道路的形成,道路的管理跟不上汽车的销售以及使用的话,就出现了大量的道路拥挤,汽车的价值无法实现。那么数据同样的道理,在网络当中形成的数据,如果被很多种原因变成一个一个单独的平台,单独的一个应用的这样一个环境的话,他的价值也远远无法实现。所以必须通过网络的想法来想这个大数据的价值以及他的运用。
大数据是一种洪水的现象,数据实际上已经远远超过我们从里面得到的洞察,以后根据洞察我们所采取的行动这种能力。就像以前感觉到吃饭吃不够,还想吃,但是今天这个是吃不了。这种现象是很多的程度上都存在于我们生活的体验中,那么现在到了数据,这是一种更极端的体验。大家可以看到,文明的开始我们创造了这么多字节,我们以前在国内在图书馆的时候我基本上都能看过,现在图书馆的书基本没有办法看全,所以这个现象已经到了极端。大数据还在不断的增长,这里面其中还牵涉到数据和数字不是完全等同的,数据可以在电脑里面用数字来表达,但是他表达的这些数据的形式往往现在更多的是跟人的交换信息是比较一致的,比如说用文字、图象、音乐。昨天我跟玫瑰爵士,玫瑰讲到一个美,很多人看到玫瑰都认为是美的,但是用数据怎么表达?如果对美能够用数据表达出来,对音乐的欣赏能够用数据表达出来,让美不断达到一种极限也是成为一种可能。所以这里面就形成了很多数据已经成为半结构或者无结构的,但是这些结构远远不足以表达我们的大自然、市场、想象力的丰富。
第三个大数据成倍的增长,这种增长我们感到必须提高到我们每一个大企业管理层必须得到高度的重视,这个里面很可能有一种企业有一种管理的方式,有一种工程的软件的实现,会使得这个数据的资源的利用,远远超过我们现在产生大数据的这些大平台已经大公司。所以阿里我感到确实有远见,把这个提高到这样一个高度。
大数据形成了很多悖论,所谓的大,我们看到的数据之大,但是价值之小。这就像你有一只船在大海里开,你看到很多水,但是一滴水都不能喝。现在大数据的情形就很类似,所以我们要能很快的能够解决这个瓶颈口的问题。
这个大数据的提出呢,已经使得很多方面的专业人士、管理人士感到应用的可能,大家都在探索。其中一个探索很大的领域就是营销。营销以前都是我们说的广播的方式,媒体的传播是很广的,当然媒体的使用只有少数人能够使用,大家都在想怎么能够把我媒体的宣传,以及营销的个性化。但是这个个性化了以后你就做不到大,你覆盖的范围就小了,成本就提高了。但是现在有了数据有了媒体的技术的提高,使得在大规模的前提下,覆盖面可以达到整个市场,但是还能保证你的个性化的发挥。所以呢,我们今天有很多媒体的朋友在,我引进了一个新词,这是用一个大数据的形式用技术的手段来实现一个窄播,而不是广播。那么窄播现在用技术的力量可以比广播更有效,而且达到的覆盖面以及有效的回报更广。
我做了一些想象,以前我们的数据不大,我们是怎么生活的呢?我们是怎么会有这样一个阿里这么一个强劲的公司呢,我们为什么会国家经济发展了,现在在数据这么大了以后,这个情况是不是会更好呢?我就想这样一些问题。
以前数据是小,所以由于数据小信号是不全,但是信号的使用信号的被发现,信号的价值还是比较充分的,这是相对来说。有了大数据以后,信号是成倍成倍的增大了,但是毫无疑问,信号的增大并不代表信号本身的发现是容易的,因为这个噪声的增加,没用信息的增加,远远超过信息的增加。这里也给大家看一下,在营销的这个领域里面,跟消费者互动的这个方面,大数据的一些起到的作用,以及他们对数据管理、数据的速度的反应这方面的一些要求。
在很多年以前,安客诚公司已经开始,先在美国然后在全球,开拓了很多的数据。这些数据就是单从数据方面来说,已经是达到相当大的规模,在美国我们管理一个消费者的数据库,有2.4亿个成人在这个数据库里面,总共人口是差不多4亿,2.4亿成人就是18岁以上都在我们数据库里面。这2.4亿相当于是1.4亿个家庭,这1.4亿个家庭每个家庭的单位上我们有1700条信息,再加上4000个购买倾向性模型打分。那么这些东西呢,在储存、使用方面,当然是有很大的挑战,但这已经有很多的技术被有效的使用来管理这么大的信息。这是我讲到的字节的数量,以及他们时间上的要求,今天的数据传播和使用的一些时间上的反应速度。
第二个阶段呢,就是到了把他数据再专门化,用到每个应用上去,这时候反应速度的要求是在几分钟以内,字节相对来说比较小一些,因为他更窄了,针对某一个专业的应用,使得它能够适合他的要求,比如说对某一个客户的要求,某一个在媒体方面的使用,数据量不大,但是对时间反应速度的要求就提高了。再往上继续保持这个趋势,数据量减少,应用专门性提高,那么对他反应的要求也进一步提高,在秒钟这个级别。在往上消费者就是要跟大批的消费者,在媒体上互动,他在网页上点击一下,你下一个网页不是同一个网页,而是根据消费者行为的了解和个人的了解,下一个网页是最有效最具有个性化的,那么他的反应速度达到微秒级,那么这个网页往往不是在PC上,而是在手机上的,包括现在更进一步的是孩子们,他们对数据反应的要求是更高,所以达到微秒级。
那么这些大数据的数量和他的速度呢,还不是一个真正大的问题,因为这一方面有了技术,有了企业这方面应用的思维,这已经不是一个最大的问题。
我今天想是超前一点,并不是说我们非得马上今天就要连结,但是这个连结已经成为很大的问题,哪一个公司,哪一个企业能够在这个方面跨第一步,得到的商业上的回报是会最大的,整个工业我们认为也在朝这个方向努力。用个比喻,我们大家都知道这个故事,盲人摸象,每个盲人摸到的反映都是不一样的,有人认为是一个矛,有人认为是一条蛇,或者一棵树等等。那么大数据的使用已经不是盲人摸象了,很多人亮着眼睛看这个象了,但是这个象已经长大几千倍了,但是即使用眼睛看,但是还是看不清楚,只能看到一个局部。所以这些问题主要的原因,我们还没有充分的运用我们的技术,我们尤其是企业操作的一种游戏规则—来使得不同的数据能够交流。因为人有这样的能力,我们懂得的东西或者我们要懂得一个原理,远远超过我们的感官能够达到,我们很多东西是看不到,听到,闻不到,尝不到的,但是我照样因为我们的理解能力,通过数据的连结我们知道是怎么回事,这个数据可以是一本书,可以是一部电影等等之类。通过这个数据的表达,使得我们知道远远超过我们的感官能够达到这样的境地。
但是要达到同样的能力,在企业上来说就必须有大量的连结,首先是数据的连结,包括哪些方面呢?
第一个数据是很多位数,尤其是很多复杂的现象,我们现在讲的复杂的现象就是消费者,消费者是怎么做决定的,为什么买这个东西,为什么出这么多钱。在美国我们感到很新奇的,为什么有很多人要在苹果出来的第一天排队八个小时,花400美元买一部,在半年以后只要100美元,不需要排队。那么在这种时候呢,如果你要掌握市场的脉搏,始终走在消费者前面,给他们提供最有效的信息以及产品的话,就需要连结,这个连结保证人文、行为、态度以及场景这方面数据的连结。然后我们看到了很多公司以及他们有技术平台,因为他们跟消费者每天都在接触,所以他们的行为接触往往超过了人文以及购买以外消费的信息。还有他们的商品很窄,我们美国安客诚所服务的有几千家公司,我经常去一些大公司跟他们谈,比如说花旗银行,大的人寿保险公司,大的零售商等等。我看到一个现象很有意思,他们看每个消费者是很窄的,他们看到的是用自己的产品品牌去看一个消费者。等八小时之后他们自己是消费者的时候,他们把视野扩大了很多。所以这就是一个问题,如果我们回到消费者本身,而不是局限于消费者这一部分数据的了解,我们的商业行为也会更有效。
第二个这些客户的生活方式和他们的兴趣。每一个东西,每一个客户的行为都有一定的道理,他有一定的背景,这种背景使得驱动他们对某一个产品感兴趣。这一方面我等一会儿再举一个例子。第三个是客户竞争和合作的关联。我们阿里巴巴有很多品牌,消费者去购买东西,或者跟他们媒体发生互动。那么这些方面呢,如果了解的话,我们更能知道我们在消费者心目当中的地位,他们是怎么使用我们的平台以及我们提供的服务,相对于其他一系列的他们的兴趣和其他的品牌的影响。第四个就是媒体。媒体现在是越来越多,那么这对消费者绝对有利的。出现什么现象呢?由于这些媒体的使用,首先是实现了营销者,公司对消费者能够接触、能够宣传他们的品牌以及产品,但第二部分是消费者可以使用媒体来更多的了解不同的公司不同的产品,他们价格、性能、体验方面的区别。
第三个方面更多的消费者是跟消费者自己直接联系,他们大家互相能够谈体验、谈对商品的反映,而且远远超过他们认识的人的这些团体的限制。所以使得很多媒体在消费这个阶段上已经完全连结在一起,但是公司与公司的数据连结并没有实现。最后一个就是社交的群体。社交的群体使得每一个个人不再是一个个人,但是我们的数据库里面,包括我们的分析的手段,分析的一些模型的这种结构,还是往往停留在这样一个假设,这个假设就是每一个个人,他就是一个个人,他今天的购买和另外一个个人的购买,可以分开对待,可以不同的用数据来表达,现在我们还没有发现一个公司把个人与个人的关系,以及个人与消费行为进行有效的联系,所以就形成了盲人摸象的问题。
以上是小编为大家分享的关于大数据的商业价值实现关键在于连结的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 怎么才能用数据实现商业价值
何为数据,数据,简单来说就是消息的记录。而数据的价值又来自哪里裤樱呢?数据本身具有什么意义呢?数据和信息是不可分离的,简单来说,数据是信息的表达,信息是数据的内涵。也就是说,数据本身是没有意义的,数据只有对实体行为产生影响时才成为信息。那么到底是数据产生价值还是信息产生价值呢?我认为是信息。只有找到数据之中的信息,才能够实现数据的价值。
而在当今互联网时代,信息化高速发展的今天,有胡族丛一个词渐渐进入了人们的视野,那就是——大数据,那么数据的意义已经有了,大数据又是何物呢?通俗的来说,大数据又成为巨量资料,大数据越来越重要,对人们的生活影响越来越大。大数据云计算已经深入到人们的生活当中。著名的天河二号超级计算机,还有后来的神威太湖之光云计算系统都是我国顶尖的大数据分析系统。大数据具有以下五个特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
网络最初最主要的功能就是个搜索,而他为什么就能够占据中国百分之八十的互联网份额,搜索,在用户眼里看似简单,只要输入目标搜索词再点个搜索键就可以,可是这里面所涉及到的数据处理,是一件极为庞大的工程,包括数据的收集,筛选,处理,显示等等的一切,而且数量如此之大的数据,他的处理过程更是难上加难。
数据实现商业价值,通俗来说就是用数据来转钱,当然这是很容易的,因为一本书的价值不在于材料而在于内容,而一本书中的内容就是数据,或者是数据产生的信息。想要真正从大数据中实现商业价值,就必须加大对数据的分析力度,提穗雀高对数据的处理能力。从数据中得到有价值的东西。
Ⅶ 如何用大数据分析创造商业价值
大数据分析是研究大量且多样的数据集(即大数据)的过程,从而揭示隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用信息,这些信息可帮助公司做出更明智的商业决策。通过专业的分析系统和软件,大数据分析可以指明商业收益的方向,比如新的机遇,有效的营销,更好的客户服务,提高运营效率以及竞争优势等等。
以下是通过大数据分析将大大受益的十大行业:
1. 银行和证券
通过网络活动监控和自然语言处理程序,监控金融市场,从而减少欺诈性交易。交易委员会正在使用大数据分析监控股票市场,避免非法交易的发生。
2. 通讯和媒体
同时在多个平台(移动,网络和电视)上实时报道世界各地的事件。媒体的一部分,音乐行业使用大数据关注最新的趋势,并通过自动调谐软件创作出流行的曲调。
3. 体育
了解特定地区针对不同活动的收视率模式,并通过分析来监测个人球员和球队的表现。像板球世界杯,FIFA世界杯和温布尔顿国际网球锦标赛的体育赛事均有使用大数据分析。
4. 医疗保健
收集公共卫生数据,从而更快地应对个人健康问题,并掌握新病毒株(如埃博拉病毒)在全球传播的状态。不同国家卫生部门合并使用大数据分析工具,以便在人口普查后进行数据收集。
5. 教育
针对目前快速发展的各种领域,更新和升级相关文献。世界各地的大学均使用大数据来检测和追踪学生和教师的情况,并通过不同科目的出席率分析学生的兴趣喜好。
6. 制造业
通过大数据提高供应链管理,提高生产率。制造企业使用这些分析工具,确保以最佳方式分配生产资源,从而获得最大效益。
7. 保险
通过预测分析处理各种业务,从开发新产品到应对索赔。保险公司使用大数据了解需求最大的政策计划,并产生更多收益。
8. 消费者贸易
预测和管理人员编制以及库存需求。消费者贸易公司通过会员制度,记录会员情况从而发展贸易。
9. 交通运输
制定更好的路线规划,交通监控和物流管理。主要是政府为了避免交通堵塞而设立的。
10. 能源
通过智能电表减少电气泄漏,并帮助用户管理能源使用情况。负荷调度中心使用大数据分析来监测负荷模式,并根据不同的参数分析能源消耗趋势之间的差异,并节约能源。
Ⅷ 大数据可以通过以下哪些方式为企业创造价值
knowlesys舆情认为:
大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。企业怎样利用大数据提升竞争力?这里从企业决策、成本控制、服务体系、产品研发四个方面加以简要讨论。
企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。
成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。
服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。
产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。