导航:首页 > 数据分析 > mysql为什么数据量增大后性能会下降

mysql为什么数据量增大后性能会下降

发布时间:2023-06-12 09:36:43

㈠ 影响数据库性能的主要因素有哪些

以MySQL为例:

影响数据库性能的主要因素总结如下:

1、sql查询速度

2、网卡流量

3、服务器硬件

4、磁盘IO

以上因素并不是时时刻刻都会影响数据库性能,而就像木桶效应一样。如果其中一个因素严重影响性能,那么整个数据库性能就会严重受阻。另外,这些影响因素都是相对的。

例如:当数据量并没有达到百万千万这样的级别,那么sql查询速度也许就不是个重要因素,换句话说,你的sql语句效率适当低下可能并不影响整个效率多少,反之,这种情况,无论如何怎么优化sql语句,可能都没有太明显的效果。


相关内容拓展:

1、SQL查询速度

风险:效率低下的SQL

2、网卡流量

风险:网卡IO被占满(100Mb/8=100MB)

方案:

①减少从服务器的数量。从服务器都要从主服务器上复制日志,所以,从服务器越多,网络流量越大。

②进行分级缓存。前方大量缓存突然失效会对数据库造成严重的冲击。

③避免使用“select * ”进行查询

④分离业务网络和服务器网络

3、磁盘IO

风险:磁盘IO性能突然下降。

方案:使用更好的磁盘设备解决。

㈡ mysql 中数据量大时超30万,加上order by 速度就变慢很多,一般需要0.8秒左右,不加只需要0.01几秒

那肯定的
ORDERY BY是要对某个字段进行排序的,有人喜欢加索引解决,但是若是对于一个频繁有写操作的表来说,一个索引还好说,要是有多个索引,数据表的大小增加会相当惊人
另上,建议使用InnoDB引挚,有人说这样速度会快很多
对于大数据级的数据库来说,最关键的一步还是要优化好你的SQL,还有就是使用非常规的作法,供参考
1,以牺牲空间换取速度,就是说看能不能进行一些适当的缓存
2,以牺牲速度换取空间,这对于小空间容量的主机可以采用

㈢ mysql数据量上十万条后,查询慢导致服务器卡有什么解决办法

几方面:
硬件,软件,以及语言
硬件,是不是抗不住,
软件,mysql是不是没有设置好,数据库设计方面等,
语言,语句写法。
下面是一些优化技巧。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20可以这样查询:select id from t where num=10 union all select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:select id from t where name like '李%'若要提高效率,可以考虑全文检索。

7.
如果在 where
子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然
而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100应改为:select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)='abc' ,name以abc开头的id
应改为:
select id from t where name like 'abc%'

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15.
索引并不是越多越好,索引固然可 以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert
或 update
时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有
必要。

16.
应尽可能的避免更新 clustered 索引数据列,因为 clustered
索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新
clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.
与临时表一样,游标并不是不可使 用。对小型数据集使用 FAST_FORWARD
游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时
间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

㈣ mysql大数据量,行数多少与数据容量,哪个直接影响查询速度

首先mysql作为传统关系型数据库,并不适合大数据量的查询,一般来说,如果数据行数达到千万价格,查询的速度会有明显的下降。
影响查询速度的原因可以有很多,比如是否在常用字段上建立了索引,还有是否支持并发等等。

阅读全文

与mysql为什么数据量增大后性能会下降相关的资料

热点内容
列表文件存储路径 浏览:540
qq游戏大厅自动出语音 浏览:598
编程只是兴趣怎么办 浏览:223
荣耀6plus电信版本 浏览:584
能打开word文件但桌面上找不到 浏览:366
2020十大网络红歌有哪些 浏览:843
手机系统空间文件夹在哪里设置快捷键 浏览:309
通信网络中的b8什么意思 浏览:715
桌面文件标题 浏览:228
优淘集市有什么app 浏览:747
找不到收藏文件 浏览:711
战狼2在什么网站 浏览:785
vb修改word 浏览:650
c盘分页文件 浏览:277
ipad如何互相传输数据 浏览:567
我的世界如何用积木编程大师复制方块 浏览:638
进网站请求路径未找到是怎么回事 浏览:807
spss21教程 浏览:655
css商业网站布局之道pdf 浏览:892
c盘不能新建文件夹win10 浏览:384

友情链接