⑴ 常见大数据公司面试问题有哪些
1、您对“大数据”一词有什么了解?
答: 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。
2、告诉我们大数据和Hadoop之间的关系。
答: 大数据和Hadoop几乎是同义词。随着大数据的兴起,专门用于大数据操作的Hadoop框架也开始流行。专业人士可以使用该框架来分析大数据并帮助企业做出决策。
注意: 在大数据采访中通常会问这个问题。 可以进一步去回答这个问题,并试图解释的Hadoop的主要组成部分。
3、大数据分析如何有助于增加业务收入?
答:大数据分析对于企业来说已经变得非常重要。它可以帮助企业与众不同,并增加收入。通过预测分析,大数据分析为企业提供了定制的建议。此外,大数据分析使企业能够根据客户的需求和偏好推出新产品。这些因素使企业获得更多收入,因此公司正在使用大数据分析。通过实施大数据分析,公司的收入可能会大幅增长5-20%。一些使用大数据分析来增加收入的受欢迎的公司是-沃尔玛,LinkedIn,Facebook,Twitter,美国银行等。
⑵ 在面试数据分析师这个职位的时候,一般会被问到哪些
首先,得看你是从事什么数据分析。
比如你是一名淘宝电商数据分析师,一般会问到,同行竞争如何,同行是怎么达到那样的销售额的,为什么人家店铺排在前几。商品能达到TOP前十,为什么没有点击率,没有转换,没有下单量,是主图设计不够吸引,还是详情页不够详细,又或者说是客服服务不够好等。
不够全面的解释,希望对你有帮助
⑶ 大数据分析面试问什么
基本工具
包括规定动作和自选动作两类。
1.1 规定动作
SQL查询: ON、DISTINCT、GROUP BY、ORDER BY等等。从数据库中提取数据是数据分析的第一步。
1.2 自选动作
根据简历来问,简历上写什么就问什么,会问得比较深入。简历作为敲门砖,撰写也是非常重要的,切不可写的过于夸张和造假,奉劝各位不要作死,毕竟不作死都有可能会死。Python、Stata、R、SPSS、SAS、EViews都算比较常见的数据分析工具。
2.逻辑思维
主要分为两方面,对业务逻辑的理解能力和行文的逻辑水平。
2.1业务逻辑
虽然一个业务看似流程简单清晰,但产生数据的复杂程度往往超过大多数人的想象。对业务逻辑的考察主要通过相关项目经历。
2.2行文逻辑
毕竟最终产出是一份份报告,可能是HTML邮件也能是PDF。
3.理论储备
也分为规定动作和可选动作。
3.1 规定动作
主要是基础的统计学理论,如方差、协方差、算数平均数、几何平均数、中位数、众数、分位值、双峰数据、长尾数据、假设检验、期望迭代法则、贝叶斯原理等。
3.2 自选动作
根据简历来问,简历上写什么hr一定会问什么。
4.对细节的敏感度
作为数据分析师,每天要关注大量数据指标。对细节的敏感度是非常必要的。这主要分为两方面,对统计口径的敏感度和对数据的敏感度。
4.1 统计口径
统计口径一致是确保数据可比性的基础,这非常考验数据分析师的敏感度和行业经验。
4.2 数据
面试者对数据异常波动、离群值、平均数没有代表意义等情况的迅速识别能力。比如已知然寿司套餐单价1,500,酒水单价300,平均客单价2,500,能不能马上想到这可能是双峰数据或者长尾数据,抑或既双峰又长尾的数据?
5.学习能力
互联网行业瞬息万变,光数据的存储就有Oracle、MySQL、Hadoop、Spark、Hive、Impala、谷哥哥三驾马车等一大堆奇奇怪怪的东西。互联网行业的从业者经常要面对新需求、新工具、新方法。能否迅速掌握新知识,解决新问题面试者必须证明给hr看。主要考察的方式是了解过往项目经历,或者出作业题(比如Sci-Hub)。
6.排版和简单UI设计
数据分析报告必须简洁、清晰、重点突出。主要考察方式是出作业题让面试者限时交一份slides(就是PPT啦)出来。
7.价值观
主要看工作热情、态度、道德水平等等,这方面的问题比较随机。
⑷ 数据分析师面试经验
数据分析师面试经验
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群:
1、想转行做数据分析工作的朋友。
2、之前在比较小的公司做数据分析师,去大公司面试。
3、在校大学生。
在回答这些问题之前,先谈我的一个面试经历,记得之前我在一家小公司做数据分析师的时候,有朋友推荐我去一家大公司去面试数据分析师。当时我也在想,在面试大公司的数据分析师一定会问:
1、你做过哪些模型?
2、用什么工具做的啊?
3、你会或者知道哪些算法啊?
4、数据量有多大?
.......
但是当我去沟通下来的时候,问关于数据挖掘模型算法原理、使用什么工具的东西不多。更多是问一些关于项目背景、怎么思考这些项目、如何使用这些模型结果、怎么推动业务方去使用数据结果。【坦白说当时觉得不可思议,怎么问这些问题呢?】
所以大家在面试数据分析岗位的时候,基础知识是必须的。但是更多要关注数据实现数据价值,特别是从事一段时间数据分析同学,但如果仅仅是刚准备从事数据分析同学,基础的专业知识与技能肯定是面试必问的话题。如果这家公司希望未来培养或者招的真的做数据分析的,那就会像我面试碰到的,一定也会很关注面试之外的问题。
回到具体面试的问题,PS:这里我仅仅谈谈我的几点看法和我面试中会问到的几个问题,以及我为什么会为这些问题。
一、了解你面试岗位的工作性质
1、你对于你面试岗位价值的理解。
2、你觉得这个岗位大概的工作内容。
3、对于公司的理解。
二、沟通表达/逻辑思维
1、说一下你过往做的一些项目/说说你以前的工作经历。
2、你之前做过的一些专业分析。
3、你之前做过的模型。
4、之前是如何与业务方打交道的。
三、对于数据与商业的理解
1、如何理解数据敏感性?
2、你觉得数据怎么体现其商业价值?能否举个例子。
四、专业技能
1、基础的统计学知识。
2、数据挖掘基本的算法。
3、怎么评估模型好坏。
4、使用的工具。
5、数据挖掘流程。
6、怎么清洗变量【例如:指标定义、缺失值处理】。
7、怎么解决建模中会碰到一些技术问题【例如:共线性、不同模型针对的.数据类型】。
五、学习能力
1、是怎么学习专业知识。
2、怎么学习业务知识。
六、职业发展
1、未来3年的职业规划。
2、要实现这些规划计划是怎么样。
我把面试过程可以会问几类问题,不同的面试官可以侧重点不一样。我想和所有面试数据分析师的朋友说的:
1、面试过程中大家是平等的。不要太弱势也不要太强势。
2、把你之前的工作有条理的表达出来。
3、面试一些问题的时候,可以想一想。我个人觉得,并不是所有的问题必须别人一问完,立即回答。
4、把面试当作一种学习与经历。关键是从一些面试中你能发现自己不足。
另外一些小tips:
1、面试之前了解这个岗位。了解一下这个公司。花点时间在面试公司和岗位,了解了解人家公司是干什么,如果你对这家公司特别感兴趣,去网站上看看,去体验体验人家公司的产品和服务。会让面试的人感觉到尊重。当然太贵就算了。
2、如果有认识的人或者通过一些渠道先了解一下你面试的公司,部门情况到底是怎么样的。到底要招什么样的人。
3、很多企业的招聘与实际需要的人之间有很大的出入。
4、投递简历前:花点时间在简历上:要看到一份没有错别字且能把之前工作写清楚在一张纸上真的很少。
5、机会是留给有准备的人。你准备好了吗?每次面试结束看,看看自己的不足,然后一定立即去学起来。
⑸ 数据分析师面试常见问题有哪些
1、如何理解过拟合?
过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。
欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。
2、为什么说朴素贝叶斯是“朴素”的?
朴素贝叶斯是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。
3、SVM 最重要的思想是什么?
SVM 计算的过程就是帮我们找到超平面的过程,它有个核心的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。
4、K-Means 和 KNN 算法的区别是什么?
首先,这两个算法解决的是数据挖掘中的两类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监督学习,需要我们给出训练数据的分类标识。最后,K 值的含义不同。K-Means 中的 K 值代表 K 类。KNN 中的 K 值代表 K 个最接近的邻居。
⑹ 小公司cto面试数据分析师会问什么
1、个人情况、对岗位的认知、项目经历陈述在内的一些常规问题。
2、小公司cto还会考察你的分析工具水平、学习能力等,比如询问你在平时工作中是否什么学习或提升,以及你对面试数据分析师的认知等。
⑺ 如何准备数据分析师面试
1. 理论知识(概率统计、概率分析等)
掌握与数据分析相关的算法是算法工程师必备的能力,如果你面试的是和算法相关的工作,那么面试官一定会问你和算法相关的问题。比如常用的数据挖掘算法都有哪些,EM 算法和 K-Means 算法的区别和相同之处有哪些等。
有些分析师的工作还需要有一定的数学基础,比如概率论与数理统计,最优化原理等。这些知识在算法优化中会用到。
除此以外,一些数据工程师的工作更偏向于前期的数据预处理,比如 ETL 工程师。这个职位考察你对数据清洗、数据集成的能力。虽然它们不是数据分析的“炼金”环节,却在数据分析过程中占了 80% 的时间。
2. 具体工具(sklearn、Python、Numpy、Pandas 等)
工程师一定需要掌握工具,你通常可以从 JD 中了解一家公司采用的工具有哪些。如果你做的是和算法相关的工作,最好还是掌握一门语言,Python 语言最适合不过,还需要对 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。
数据 ETL 工程师还需要掌握 ETL 工具,比如 Kettle。
如果是数据可视化工作,需要掌握数据可视化工具,比如 Python 可视化,Tableau 等。
如果工作和数据采集相关,你也需要掌握数据采集工具,比如 Python 爬虫、八爪鱼。
3. 业务能力(数据思维)
数据分析的本质是要对业务有帮助。因此数据分析有一个很重要的知识点就是用户画像。
用户画像是企业业务中用到比较多的场景,对于数据分析来说,就是对数据进行标签化,实际上这是一种抽象能力。
关于如何准备数据分析师面试,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑻ 怎么面试大数据分析师
1、考察对数据的敏感度。
面试的时候,数据部门经理问一些生活中的数据的问题,一个优秀的数据分析师对数据有很强的敏感度,生活中常见的数据,你直观的感受往往能反应出你的资质。
2、数学基本概念和统计学方法。
遇到的有排列组合的问题的,还有指数衰减的定义等等。或者直接给一个问题或者数据,问问你打算用什么样的方法怎样去分析。在给你数据的时候,一定要记得说数据预处理!这一点非常重要,这样会让人觉得你的回答逻辑清楚,有条有理。如果想从事与数据科学相关的岗位,需要学习的数据知识可以参考成都加米谷大数据培训机构的:想从事数据科学相关岗位,这些数学基础“必备”。
3、编程能力。
你一定要有自己熟练的软件,常问的问题是,你一般用excel干什么,常用的函数有哪些?你是否用过数据透视表?是够用过宏?你平时多久用一次R?你是否用过或了解过并行?等等关于软件的问题。在面试小公司时,HR会可能直接给你一个数据进行数据分析,题目一般给的都不太难。