① 数据分析中的P值怎么计算、什么意义
一、P值计算方法
左侧检验P值是当时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
右侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
双侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。
二、P值的意义
P 值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为显著, P <0.01 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05 或0.01。
(1)怎么利用p语言做数据分析扩展阅读:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
② 我想用检验两组数据的相关性,应该怎么做相关与“显著性差异”的关系p怎么求
显著性0.229,高于0.05,所以这样分析相关性不成立,而且样本量太低了,最少30个样本。
根据表现形式,可分为:模拟数据,由连续函数组成,是指在一定间隔内连续变化的物理量,也可分为图形数据(如点、线、面)、符号数据、文本数据、图像数据等,如声音大小和温度变化等。
(2)怎么利用p语言做数据分析扩展阅读:
技术标准:
当做出结论时,应该真正描述方向性(例如,明显大于或明显小于),sig值通常表示为P>0.05,表明没有显著差异,0.01<P<0.05表示显著差异,P<0.01表示显著差异。
如果在测试一个实验中测量的数据,那么当数据之间存在显著差异时,实验的零假设可以被推翻,并且替代假设测试得到支持,相反,如果数据之间没有显著差异,实验的另一个假设可以被推翻,虚无主义的假设得到支持。
原理:
当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。
案例:
例如,记忆术研究发现,被试学习某记忆法前的成绩和学习记忆法后的记忆成绩会有显著性差异,这一差异很可能来自于学××记忆法对被试记忆能力的改变。
显著性差异是一种有量度的或然性评价,比如,我们说A、B两数据在0.05水平上具备显著性差异,这是说两组数据具备显著性差异的可能性为95%。
两个数据所代表的样本还有5%的可能性是没有差异的。这5%的差异是由于随机误差造成的。
③ 如何用python写 数据分析工具
数据导入
导入本地的或者web端的CSV文件;
数据变换;
数据统计描述;
假设检验
单样本t检验;
可视化;
创建自定义函数。
数据导入
这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:
Python
1
2
3
4
5
6
7
8
import pandas as pd
# Reading data locally
df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')
# Reading data from web
data_url = "t/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df = pd.read_csv(data_url)
为了读取本地CSV文件,我们需要pandas这个数据分含旅析库中的相应模块。其中的read_csv函数能够读取本地和web数据。
数据变换仔洞
既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Head of the data
print df.head()
# OUTPUT
0 12432934148330010553
1 41589235 4287806335257
2 17871922 19551074 4544
317152 14501 3536 1960731687
4 12662385 25303315 8520
# Tail of the data
print df.tail()
# OUTPUT
74 2505 20878 3519 1973716513
7560303 40065 7062 1942261808
76 63116756 3561 15910谈戚凳23349
7713345 38902 2583 1109668663
78 2623 18264 3745 1678716900
对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理。
在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:
Python
1
2
3
4
5
6
7
8
9
10
11
# Extracting column names
print df.columns
# OUTPUT
Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')
# Extracting row names or the index
print df.index
# OUTPUT
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')
数据转置使用T方法,
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Transpose data
print df.T
# OUTPUT
01 23 45 67 89
Abra1243 41581787171521266 5576 927215401039 5424
Apayao2934 92351922145012385 7452109917038138210588
Benguet148 42871955 353625307712796 24632592 1064
Ifugao3300
... 69 70 71 72 73 74 75 76 77
Abra ...12763 247059094 620913316 250560303 631113345
Apayao ...376251953235126 6335386132087840065 675638902
Benguet... 2354 4045 5987 3530 2585 3519 7062 3561 2583
Ifugao ... 9838171251894015560 774619737194221591011096
Kalinga...
78
Abra2623
Apayao 18264
Benguet 3745
Ifugao 16787
Kalinga16900
Other transformations such as sort can be done using<code>sort</code>attribute. Now let's extract a specific column. In Python, we do it using either<code>iloc</code>or<code>ix</code>attributes, but<code>ix</code>is more robust and thus I prefer it. Assuming we want the head of the first column of the data, we have
其他变换,例如排序就是用sort属性。现在我们提取特定的某列数据。Python中,可以使用iloc或者ix属性。但是我更喜欢用ix,因为它更稳定一些。假设我们需数据第一列的前5行,我们有:
Python
1
2
3
4
5
6
7
8
9
print df.ix[:, 0].head()
# OUTPUT
0 1243
1 4158
2 1787
317152
4 1266
Name: Abra, dtype: int64
顺便提一下,Python的索引是从0开始而非1。为了取出从11到20行的前3列数据,我们有:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
print df.ix[10:20, 0:3]
# OUTPUT
AbraApayaoBenguet
109811311 2560
1127366 15093 3039
12 11001701 2382
13 7212 11001 1088
14 10481427 2847
1525679 15661 2942
16 10552191 2119
17 54376461734
18 10291183 2302
1923710 12222 2598
20 10912343 2654
上述命令相当于df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。
为了舍弃数据中的列,这里是列1(Apayao)和列2(Benguet),我们使用drop属性,如下:
Python
1
2
3
4
5
6
7
8
9
print df.drop(df.columns[[1, 2]], axis = 1).head()
# OUTPUT
AbraIfugaoKalinga
0 1243330010553
1 4158806335257
2 17871074 4544
317152 1960731687
4 12663315 8520
axis参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行。
统计描述
下一步就是通过describe属性,对数据的统计特性进行描述:
Python
1
2
3
4
5
6
7
8
9
10
11
12
print df.describe()
# OUTPUT
AbraApayaoBenguetIfugao Kalinga
count 79.000000 79.00000079.000000 79.000000 79.000000
mean 12874.37974716860.6455703237.39240512414.62025330446.417722
std16746.46694515448.1537941588.536429 5034.28201922245.707692
min927.000000401.000000 148.000000 1074.000000 2346.000000
25% 1524.000000 3435.5000002328.000000 8205.000000 8601.500000
50% 5790.00000010588.0000003202.00000013044.00000024494.000000
75%13330.50000033289.0000003918.50000016099.50000052510.500000
max60303.00000054625.0000008813.00000021031.00000068663.000000
假设检验
Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000,我们有:
Python
1
2
3
4
5
6
7
from scipy import stats as ss
# Perform one sample t-test using 1500 as the true mean
print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)
# OUTPUT
(-1.1281738488299586, 0.26270472069109496)
返回下述值组成的元祖:
t : 浮点或数组类型
t统计量
prob : 浮点或数组类型
two-tailed p-value 双侧概率值
通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000,我们有:
Python
1
2
3
4
5
6
print ss.ttest_1samp(a = df, popmean = 15000)
# OUTPUT
(array([ -1.12817385, 1.07053437, -65.81425599,-4.564575, 6.17156198]),
array([2.62704721e-01, 2.87680340e-01, 4.15643528e-70,
1.83764399e-05, 2.82461897e-08]))
第一个数组是t统计量,第二个数组则是相应的p值。
可视化
Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块。之前的博文中,我已经说明了matplotlib库中的盒须图模块功能。
;
重复100次; 然后
计算出置信区间包含真实均值的百分比
Python中,程序如下:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
import scipy.stats as ss
def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
m = np.zeros((rep, 4))
for i in range(rep):
norm = np.random.normal(loc = mu, scale = sigma, size = n)
xbar = np.mean(norm)
low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
if (mu > low) & (mu < up):
rem = 1
else:
rem = 0
m[i, :] = [xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了Python专家,看我上篇博文的15条意见吧。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import numpy as np
import scipy.stats as ss
def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))
xbar = norm.mean(1)
low = xbar - scaled_crit
up = xbar + scaled_crit
rem = (mu > low) & (mu < up)
m = np.c_[xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
更新
那些对于本文ipython notebook版本感兴趣的,请点击这里。这篇文章由Nuttens Claude负责转换成ipython notebook 。
④ 谁有利用python进行数据分析 pdf 的中文 完整版的,求发一下
目录
前言 1
第1章 准备工作 5
本书主要内容 5
为什么要使用Python进行数据分析 6
重要的Python库 7
安装和专设置 10
社区和研讨属会 16
使用本书 16
致谢 18
第2章 引言 20
来自bit.ly的1.usa.gov数据 21
MovieLens 1M数据集 29
1880—2010年间全美婴儿姓名 35
小结及展望 47
第3章 IPython:一种交互式计算和开发环境 48
IPython基础 49
内省 51
使用命令历史 60
与操作系统交互 63
软件开发工具 66
IPython HTML Notebook 75
利用IPython提高代码开发效率的几点提示 77
高级IPython功能 79
致谢 81
第4章 NumPy基础:数组和矢量计算 82
NumPy的ndarray:一种多维数组对象 83
通用函数:快速的元素级数组函数 98
利用数组进行数据处理 100
用于数组的文件输入输出 107
线性代数 109
随机数生成 111
范例:随机漫步 112
第5章 pandas入门 115
pandas的数据结构介绍 116
基本功能 12...
网页链接