导航:首页 > 数据分析 > 股票数据如何建模

股票数据如何建模

发布时间:2023-05-19 11:30:33

A. 如何建立一个股票量化交易模型并仿真

研究量化投资模型的目的是找出那些具体盈利行羡确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。x0dx0a量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。x0dx0a量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到丛氏100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。x0dx0a量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。x0dx0a量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。x0dx0a统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。x0dx0a用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。档郑拍

B. 计算股票价值的模型有哪些

常见的方法有三种:1.Discounted Cash Flow(DCF)折现法2.Dividend Discount Model(DDM)股息折现法3.Earning Growth Model(EGM)盈利成长法。

DCF法

DCF法,即现金流量折现法,通常是企业价值评估的首选方法。DCF法的步骤是:
1)确定未来收益年限T;
2)预测未来T年内现金流;
3)确定期望的回报率(贴现率);
4)用贴现率将现金流贴现后加总。

DDM法

就是以股息率为标准评估股票价值,对希望从投颂搜资中获得现金流量收益的投资者特别有用。可使用简化后的计算公式:股票价格=预期来年股息/投资者要求的回报率。

例如:汇控今年预期股息0.32美元(约2.50港元),投资者希望资本回报野告历为年5.5%,其它因素不变情况下,汇控目标价应为45.50元。

盈利成长法

相对估值在操作上相对简单,在默认市场对同类股票估值正确的前提下,用不同的企业数据(账面股本价值,销售额,净利润,EBITDA等)乘以相应的乘数(乘数是由市场上同类股票的估值除以其相应的企业数据得出的)。

最为投资者广泛应用的盈利标准比率是市盈率(PE),其公式:市盈率=股价/每股收益。使用市盈率有以下好处,计算简单,数据采集很容易,每天经济类报纸上均有相关资料,被称为历史市盈率或静态市盈率。但要注意,为更准确反映股票价格未来的趋势,应使用预期市盈率,即在公式中代入预期收益。

由于未来因素具有不确定性,无论用绝对估值和相对估值得出的往往都是一个价格区间
的估值则相对简单。

股票估值分类

1.绝对估值

就是用企业数据结合市场利率能算出来的估值。具体思路就是将企业未来的某种流(经营所产生的流,股息,净利润等)用与其在风险,时间长度上相匹配的回报率贴现得到的价值。

2.相对估值

是使用市盈友拦率、市净率、市售率、市现率等价格指标与其它多只股票(对比系)进行对比,如果低于对比系的相应的指标值的平均值,股票价格被低估,股价将很有希望上涨,使得指标回归对比系的平均值。

C. 如何构建动态协整模型来解释长期股票价格与盈利的关系

动态协整模型是一种用于分析和解释时间序列数据关系的模型,可应用于股票价格和盈利之间的关系建模。

以下是一种构建动态协整模型的示例步骤:

D. 如何建立一个股票量化交易模型并仿真

用python:金融想法->数据处理->模型回测->模拟交易信衡滑->业绩归因->模型修正。

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

量化交易具有以下几个方面的特点:

1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。

2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量滑腊投资的核心思想包括宏观周期、市场结构、估值、成拦埋长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。

3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

E. 股票交易模型怎样建立

交易模型即交易理论、交易方法,投资者构建一套完整的交圆念易模型需要经过以下几个步骤:
1、认清自己的投资偏好,是对自己的一个定位,投资者可以根据自己的性格特点和交易风格先把自己的交易流派区分清楚:趋势交易者,短线交易者,日内交易凳携者等。
2、在认清自己的投资偏好之后,选择有针对性的技术指标进行学习,比如,对于趋势交易者,可以学习均线理论,根据均线理论中多头排列的特点进行买卖。
3、纸上得来终觉浅,绝知此事需躬行,投资者可以先进行模拟操作,检验技术指标的正确性,对自己的交易方法进行总结,归纳出自己交易方法的框架和思路,如果发现自己以往的交易方法和自己的交易流派有冲突时最好重新总结归纳另一套方法。
4、模拟检验完成之后,进行实战,在实战中,投资者应严格按照交易模型执行。

拓展资料:
股票(stock)是股份公司所有权的一部分,也是发行的所有权凭证,是股份公司为筹集资金而发行给各个股东作为持股凭证并借以取得股息和红利的一种有价证券。股票是资本市场的长期信用工具,可以转让,买卖,股东凭借它可以分享公司的利润,但也要承担公司运作错误所带来的风险。每股股票都代表股东对企业拥有一个基本单位的所有权。每家上市公司都会发行股票。
同一类别的每一份股票所代表的公司所有权是相等的。每个股东所拥有的公司所有权份额的大小,取决于其持有的股票数量占公司总股本的比重。
股票是股份公司资本的构成部分,可以转让、买卖,是资本市场的主要长期信用工具,但不能要求公司返还其出资。
股票是股份制企业(上市和非上市)所有者(即股东)拥有公橘粗困司资产和权益的凭证。上市的股票称流通股,可在股票交易所(即二级市场)自由买卖。非上市的股票没有进入股票交易所,因此不能自由买卖,称非上市流通股。
这种所有权为一种综合权利,如参加股东大会、投票标准、参与公司的重大决策、收取股息或分享红利等,但也要共同承担公司运作错误所带来的风险。
股票是一种有价证券,是股份公司在筹集资本时向出资人发行的股份凭证,代表着其持有者(即股东)对股份公司的所有权。股票是股份证书的简称,是股份公司为筹集资金而发行给股东作为持股凭证并借以取得股息和红利的一种有价证券。每股股票都代表股东对企业拥有一个基本单位的所有权。股票是股份公司资本的构成部分,可以转让、买卖或作价抵押,是资金市场的主要长期信用工具。

F. 怎么用同花顺的数据做一个股票模型

同花顺中导出数据我可以告诉你方法 ,其他的不懂。
同花顺导出数据方法:在K线图界面,按F1进入历史成交,往上翻郑明,翻到你要笑丛型的起始点,点鼠标右键,数据导出,导出所碰猜有数据,下一步,下一步,完成。默认保存在桌面上。

G. 如何构建一个能够有效预测股票价格变动的模型

H. 如何用Arma模型做股票估计

时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用携桐好AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型轮备应用于金融等时间序列问题的研究和预辩铅测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。

I. 怎么做股票模型

我也曾今也想到过这个问题。但则扒拦是,告诉你一个不幸的消息,股票不可以用模型制作,我以前试过用指数模型和高斯分布做过,但后来去给一个博士谈到这个问题的时候。最终达成一致共识,股票不能建立模型。只能在股票和其他衍生工具之间建立交易模型,例如capm,b-s模型。如果是老师布置的作业,你就给她说孙胡,不能建立模型。此培

阅读全文

与股票数据如何建模相关的资料

热点内容
编程能玩什么游戏 浏览:13
怎么用win10镜像 浏览:552
10岁没接触编程学什么程序好 浏览:375
jsselect必填 浏览:784
python学习编程需要什么基础 浏览:114
ug打开文件找不到 浏览:859
获取登录数据失败怎么解决 浏览:30
极迅加速没网络 浏览:766
京东代升级 浏览:488
开源筛选工具 浏览:840
cad怎么删除保存的文件 浏览:185
哪个app歌声可以下载 浏览:519
解压过的文件怎么打开 浏览:929
苹果4s怎么打开文件 浏览:710
别人拷了excel文件怎么删 浏览:736
微信收发文件查询系统异常 浏览:541
织梦幻灯片调用代码 浏览:126
怪物猎人怎么升级hr 浏览:547
主表关联子表并查子表中的数据库 浏览:796
苹果快牙传输文件后可以卸载吗 浏览:703

友情链接