Ⅰ 怎么使用python爬取百度网的数据
档案系统初期算是告一段落了,利用一点时间继续爬取POI。和领导聊聊,受益匪浅。之前我的想法是爬取一份poi数据,直接能用;而领导听了之后,觉得更好的方式是爬取多个渠道来源的POI数据,然后做一个数据比较融合(最终事情能不能成不好说,但是经过这么一回,细节技术上有所提高,宏观把控整体项目流程能力有所长进,更重要的是通过和能人交流,以更高的眼界更宏观的看待数据、应用以及问题,这就是成长)。 我之前采用的方式,可以满足需求,但是POI数据获取效率差一些(虽然已经很快,但是相比本文这种还是慢一些)、数据现势性不好,高德数据和网络数据虽然是两套,但是仅仅是坐标不同(所以显然还是一套)。所以,我加一种方式来爬取网络poi。
一 调研: 网络API提供了一个叫Place API获取poi的接口,有个城市内检索 实例为
ce/v2/search?query=银行&page_size=10&page_num=0&scope=1®ion=北京&output=json&ak={您的密钥}
它返回的是个json类型数据,一个区域最大返回数为400,每页最大返回数为20。显然一个城市内不管什么类别的poi,不可能只有400个,会遗漏数据,故舍去
还有一个矩形区域检索,实例为
u.com/place/v2/search?query=美食&page_size=10&page_num=0&scope=1&bounds=39.915,116.404,39.975,116.414&output=json&ak={您的密钥}只要区域划分得当,这个可以使用
二 要解决的问题
1 区域划分
网上有人通过递归写代码的方式来划分,这样划分有问题,第一,划分的区域不能完全对应一个城市的市区;第二,算法设计比较麻烦。解决办法,后面详细说。
2 类别问题
网络API的接口必须要指定query的类别,那么如果类别指定不准,或者类别不全,根本无法完成爬取一个城市所有poi的任务。解决办法,说实话,这个问题在我做这件事情的时候,
十分棘手,不过我最终找到了这个网页
/index.php?title=lbscloud/poitags,一切都不是问题了
三 整体流程
1 区域划分,2km*2km的区域基本可以满足需求,获取每个区域的对角坐标(经纬度),逐行写入一个txt文本里
2 爬虫程序编写 读取1中的txt文本,逐行循环;调用网络API接口,爬取json;将爬取的数据存入数据库中; 每个类别跑一次程序
3 爬下的POI数据处理 poi显示,投影坐标转换,与地图叠加
后文将详细介绍流程
Ⅱ 怎么用VBA或网络爬虫程序抓取网站数据
ForeSpider数据采集系统是天津市前嗅网络科技有限公司自主知识产权的通用性互联网数据采集软件。软件几乎可以采集互联网上所有公开的数据,通过可视化的操作流程,从建表、过滤、采集到入库一步到位。支持正则表达式操作,更有强大的面向对象的脚本语言系统。
台式机单机采集能力可达4000-8000万,日采集能力超过500万。服务器单机集群环境的采集能力可达8亿-16亿,日采集能力超过4000万。并行情况下可支撑百亿以上规模数据链接,堪与网络等搜索引擎系统媲美。
软件特点:
一.通用性:可以抓取互联网上几乎100 %的数据
1.支持用户登录。
2.支持Cookie技术。
3.支持验证码识别。
4.支持HTTPS安全协议。
5.支持OAuth认证。
6.支持POST请求。
7.支持搜索栏的关键词搜索采集。
8.支持JS动态生成页面采集。
9.支持IP代理采集。
10.支持图片采集。
11.支持本地目录采集。
12.内置面向对象的脚本语言系统,配置脚本可以采集几乎100%的互联网信息。
二.高质量数据:精准采集所需数据
1.独立知识产权JS引擎,精准采集。
2.内部集成数据库,数据直接采集入库。
3.内部创建数据表结构,抓取数据后直接存入数据库相应字段。
4.根据dom结构自动过滤无关信息。
5.通过模板配置链接抽取和数据抽取,目标网站的所有可见内容均可采集,智能过滤无关信息。
6.采集前数据可预览采集,随时调整模板配置,提升数据精度和质量。
7.字段的数据支持多种处理方式。
8.支持正则表达式,精准处理数据。
9.支持脚本配置,精确处理字段的数据。
三.高性能:千万级的采集速度
1.C++编写的爬虫,具备绝佳采集性能。
2.支持多线程采集。
3.台式机单机采集能力可达4000-8000万,日采集能力超过500万。
4.服务器单机集群环境的采集能力可达8亿-16亿,日采集能力超过4000万。
5.并行情况下可支撑百亿以上规模数据链接,堪与网络等搜索引擎系统媲美。
6.软件性能稳健,稳定性好。
四.简易高效:节约70%的配置时间
1.完全可视化的配置界面,操作流程顺畅简易。
2.基本不需要计算机基础,代码薄弱人员也可快速上手,降低操作门槛,节省企业爬虫工程师成本。
3.过滤采集入库一步到位,集成表结构配置、链接过滤、字段取值、采集预览、数据入库。
4.数据智能排重。
5.内置浏览器,字段取值直接在浏览器上可视化定位。
五. 数据管理:多次排重
1. 内置数据库,数据采集完毕直接存储入库。
2. 在软件内部创建数据表和数据字段,直接关联数据库。
3. 采集数据时配置数据模板,网页数据直接存入对应数据表的相应字段。
4. 正式采集之前预览采集结果,有问题及时修正配置。
5. 数据表可导出为csv格式,在Excel工作表中浏览。
6. 数据可智能排除,二次清洗过滤。
六. 智能:智能模拟用户和浏览器行为
1.智能模拟浏览器和用户行为,突破反爬虫限制。
2.自动抓取网页的各类参数和下载过程的各类参数。
3.支持动态IP代理加速,智能过滤无效IP代理,提升代理的利用效率和采集质量。
4.支持动态调整数据抓取策略,多种策略让您的数据无需重采,不再担心漏采,数据采集更智能。
5.自动定时采集。
6.设置采集任务条数,自动停止采集。
7.设置文件大小阈值,自动过滤超大文件。
8.自由设置浏览器是否加速,自动过滤页面的flash等无关内容。
9.智能定位字段取值区域。
10.可以根据字符串特征自动定位取值区域。
11.智能识别表格的多值,表格数据可以完美存入相应字段。
七. 优质服务
1.数据采集完全在本地进行,保证数据安全性。
2.提供大量的各个网站配置模板在线下载,用户可以自由导入导出。
3.升级后续不断开发的更多功能。
4.更换2次绑定的计算机。
5.为用户提供各类高端定制化服务,全方位来满足用户的数据需求。
Ⅲ 如何用python爬取网站数据
这里简单介绍一下吧,以抓取网站静态、动态2种数据为慧返拍例,实验环境win10+python3.6+pycharm5.0,主要内容如下:
抓取网站静态数据(数据在网页源码中):以糗事网络网站数据为例
1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:
对应的网页源码如下,包含我们所需要的数据:
2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:
程序运行截图如下,已经成功爬取到数据:
抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例
1.这里假设我们爬取的是债券数据,主要包括年利率世型、借款标题、期限、金额和进度这5个字段信息,截图如下:
打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:
2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:
程序运行截图如下,前羡已经成功抓取到数据:
至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。
Ⅳ java jsoup怎样爬取特定网页内的数据
1、Jsoup简述
Java中支持的爬虫框架有很多,比如WebMagic、Spider、Jsoup等。
Jsoup拥有十分方便的api来处理html文档,比如参考了DOM对象的文档遍历方法,参考了CSS选择器的用法等等,因此我们可以使用Jsoup快速地掌握爬取页面数据的技巧。
2、快速开始
1)分析HTML页面,明确哪些数据是需要抓取的
2)使用HttpClient读取HTML页面
HttpClient是一个处理Http协议数据的工具,使用它可以将HTML页面作为输入流读进java程序中.
3)使用Jsoup解析html字符串
通过引入Jsoup工具,直接调用parse方法来解析一个描述html页面内容的字符串来获得一个Document对象。该Document对象以操作DOM树的方式来获得html页面上指定的内容。
3、保存爬取的页面数据
1)保存普通数据到数据库中
将爬取的数据封装进实体Bean中,并存到数据库内。
2)保存图片到服务器上
直接通过下载图片的方式将图片保存到服务器本地。