㈠ 如何用python抓取网页数据库
最简单可以用urllib,python2.x和python3.x的用法不同,以python2.x为例:
import urllib
html = urllib.open(url)
text = html.read()
复杂些可以用requests库,支持各种请求类型,支持cookies,header等
再复杂些的可以用selenium,支持抓取javascript产生的文本
㈡ 如何用python爬取网站数据
这里简单介绍一下吧,以抓取网站静态、动态2种数据为慧返拍例,实验环境win10+python3.6+pycharm5.0,主要内容如下:
抓取网站静态数据(数据在网页源码中):以糗事网络网站数据为例
1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:
对应的网页源码如下,包含我们所需要的数据:
2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:
程序运行截图如下,已经成功爬取到数据:
抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例
1.这里假设我们爬取的是债券数据,主要包括年利率世型、借款标题、期限、金额和进度这5个字段信息,截图如下:
打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:
2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:
程序运行截图如下,前羡已经成功抓取到数据:
至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。
㈢ python requests延迟
importrequestss=requests.session()data={'email':'用户名','password':'密码'}s.post(',data)r=s.get(")printr.text#打印登陆成功后的首页编辑器把url格式给改了再出一个和谐版把和谐俩字去掉就可以了importrequestss=requests.session()data={'email':'用户名启改','password':'密码'}s.post('http和谐://和谐/PLogin.do'李团,data)r=s.get("和谐http和谐://"悄扰判)printr.text
㈣ 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
㈤ python怎样抓取网页中的文字和数字数据
通过xpath路径来定位到要提取的元素,在路径后面加上/text()可以提取该元素的文本,如果是要提取属性值,在路径后面加上/@属性名就可以。如果要只采集数字或者文字,可以使用正则来实现。比如数字的正字表达式:[0-9]+。希望可以帮到题主
㈥ 如何用python抓取js生成的数据
一、查看相应的js代码,用python获取原始颂迟消数据之后,模仿js编写相应的python代码。
二、通过接口api获得数据,直接使用python获取接口数据野知并处理。
三。终旦闭极方法。使用 Selenium和PhantomJS执行网页js代码,然后再获取数据,这种方法100%可以获取数据,确定就是速度太慢。
㈦ python爬虫怎么做
大到各类搜索引擎,小到日常数据采集,都离不开网络爬虫。爬虫的基本原理很简单,遍历网络中网页,抓取感兴趣的数据内容。这篇文章会从零开始介绍如何编写一个网络爬虫抓取数据做告宏,然后会一步步逐渐完善爬虫的抓取功能。
工具安装
我们需要安装python,python的requests和BeautifulSoup库。我们用Requests库用抓取网页的内容,使用BeautifulSoup库来从网页中提取数据。
安装python
运行pipinstallrequests
运行pipinstallBeautifulSoup
抓取网页
完成必要工具安装后,我们正式开始编写我们的爬虫。我们的第一个任务是要抓取所有豆瓣上的图书信息。我们以/subject/26986954/为例,首先看看开如何抓取网页的内容。
使用python的requests提供的get()方法我们可以非常简单的获取的指定网页的内纯册容,代码如下:
提取内容
抓取到网页的内容后,我们要做的就是提取出我们想要的内容。在我们的第一个例子中,我们只需要提取书名。首先我们导入BeautifulSoup库,使用BeautifulSoup我们可以非常简单的提取网页的特定内容。
连续抓取网页
到目前为止,我们已经可以抓取单个网页的内容了,现在让我们看看如何抓取整个网站的内容。我们知道网页之间是通过超链接互相连接在一起的,通过链接我们可以访问整个网络。所以我们可以从每个页面提取出包含指向其它网页的链接,然后重复的对新链接进行抓取。
通过以上几步我们就可以写出一个最原始的爬虫。在理解了爬虫原理的基础上,我们可以进一步对爬虫进行完善。
写过一个系列关于爬虫的文章:/i6567289381185389064/。感兴趣的可以前往查看。
Python基本环境的搭建,爬虫的基本原理以及爬虫的原型
Python爬虫入门(第1部分)
如何使用BeautifulSoup对网页内容进行提取
Python爬虫入门(第2部分)
爬虫运行时数据的存储数据,以SQLite和MySQL作为示例
Python爬虫入门(第3部分)
使用seleniumwebdriver对动态网页进行抓取
Python爬虫入门(第4部分)
讨论了如何处理网站的反爬虫策略
Python爬友如虫入门(第5部分)
对Python的Scrapy爬虫框架做了介绍,并简单的演示了如何在Scrapy下进行开发
Python爬虫入门(第6部分)
㈧ 从零开始学Python-使用Selenium抓取动态网页数据
AJAX(Asynchronouse JavaScript And XML:异步JavaScript和XML)通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新,这意味着可以在不重带洞新加载整个网页的情况下,对网页的某部分进行局部更新。传统的网页(不使用Ajax)如果需要更新内容,必蠢者枯须重载整个网页页面。
因为传统的网页在传输数据格式方面,使用的是 XML 语法,因此叫做 AJAX ,其实现在数据交互基本上都是使用 JSON 。使用AJAX加载的数据,即使使用了JS将数据渲染到了浏览器中,在 右键->查看网页源代码 还是不能看到通嫌隐过ajax加载的数据,只能看到使用这个url加载的html代码。
法1:直接分析ajax调用的接口。然后通过代码请求这个接口。
法2:使用Selenium+chromedriver模拟浏览器行为获取数据。
Selenium 相当于是一个机器人。可以模拟人类在浏览器上的一些行为,自动处理浏览器上的一些行为,比如点击,填充数据,删除cookie等。 chromedriver 是一个驱动 Chrome 浏览器的驱动程序,使用他才可以驱动浏览器。当然针对不同的浏览器有不同的driver。以下列出了不同浏览器及其对应的driver:
现在以一个简单的获取网络首页的例子来讲下 Selenium 和 chromedriver 如何快速入门:
参考:Selenium的使用
直接直接分析ajax调用的接口爬取
selenium结合lxml爬取
㈨ 如何用python抓取这个网页的内容
如果包含动态内容可以考虑使用Selenium浏览器自动化测试框架,当然找人有偿服务也可以
㈩ 如何用Python爬取数据
方法/步骤
在做爬取数据之前,你需要下载安装两个东西,一个是urllib,另外一个是python-docx。
7
这个爬下来的是源代码,如果还需要筛选的话需要自己去添加各种正则表达式。