A. 大数据的类型
大数据要分析的数据类型主要有四大类:
1.交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2.人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3.移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4.机器和传感器数据(MACHINE AND SENSOR DATA)
B. 大数据的结构是什么
大数据是指无法在一定时间内用常规软件亮中工具对其内容进行抓取、管理和处理的数郑键衫据集合。大数据技术是指从各种各样类型的数喊腔据中,快速获得有价值信息的能力。
C. 大数据分析类型有哪些,有知道吗
按照数据结构抄分类,袭可以分为结构化数据(表格),非结构化数据(视频,音频,图像),半结构化数据(如模型文档等)。
按照应用场景可以分为工业数据和消费数据两大类,工业数据主要是指生产制造企业从研发设计,生产制造,经营管理,客户服务等环节的数据。消费数据主要面向客户或者需求,比如客户喜好,客户评价,市场分布,仓储率等
按照数据重要程度可以分为,脏数据,低质数据,高质数据以及核心数据,这个就需要结合企业业务需求自行界定。
D. 大数据的结构层级
随着互联网的发展,越来越多的信息充斥在网络上,而大数据就是依靠对这些信息的收集、分类、归纳整理喊拿出我们所需要的信息,然后利用这些信息完成一些工作需要的一项能力技术。
今天,沙河电脑培训主要就是来分析一下,大数据这项技术到底有那几个层次。
移动互联网时代,数据量呈现指数级增长,其中文本、音视频等非结构数据的占比已超过85%,未来将进一步增大。Hadoop架构的分布式文件系统、分布式数据库和分布式并行计算技术解决了海量多源异构数据在存储、管理和处理上的挑战。
从2006年4月第一个ApacheHadoop版本发布至今,Hadoop作为一项实现海量数据存储、管理和计算的开源技术,已迭代到了v2.7.2稳定版,其构成组件也由传统的三驾马车HDFS、MapRece和HBase社区发展为由60多个相关组件组成的庞大生态,包括数据存储、执行哗正引擎、编程和数据访问框架等。其生态系统从1.0版的三层架构演变为现在的四层架构:
底层——存储层
现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。HDFS现已成为大数据磁盘存储的事实标准,其上层正在涌现越来越多的文件格式封装(如Parquent)以适应BI类数据分析、机器学习类应用等更多的应用场景。未来HDFS会继续扩展对于新兴存储介质和服务器架构的支持。另一方面,区别于常用的Tachyon或Ignite,分布式内存文件系统新贵Arrow为列式内存存储的处理和交互提供了规范,得到了众多开发者和产业巨头的支持。
区别于传统的关系型数据库,HBase适合于非结构化数据存储。而Cloudera在2023年10月公布的分布式关系型数据库Ku有望成为下一代分析平台的重要组郑芦搭成,它的出现将进一步把Hadoop市场向传统数据仓库市场靠拢。
中间层——管控层
管控层对Hadoop集群进行高效可靠的资源及数据管理。脱胎于MapRece1.0的YARN已成为Hadoop2.0的通用资源管理平台。如何与容器技术深度融合,如何提高调度、细粒度管控和多租户支持的能力,是YARN需要进一步解决的问题。另一方面,Hortonworks的Ranger、Cloudera的Sentry和RecordService组件实现了对数据层面的安全管控。
E. 数据采集|教育大数据的来源、分类及结构模型
一、 教育大数据的来源
教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。
教育大数据产生于 各种教育实践活动 ,既包括校园环境下的教学活动、管理活动、科研活动以及校园生活,也包括家庭、社区、博物馆、图书馆等非正式环境下的学习活动;既包括线上的教育教学活动,也包括线下的教育教学活动。
教育大数据的核心数据源头是“人”和“物”——“人”包括学生、教师、管理者和家长,“物”包括信息系统校园网站、服务器、多媒体设备等各种教育装备。
依据来源和范围的不同,可以将教育大数据分为个体教育大数据、课程教育大数据、班级教育大数据、学校教育大数据、区域教育大数据、国家教育大数据等六种 。
二、 教育大数据的分类
教育数据有多重分类方式。
从数据产生的业务来源来看,包括 教学类数据、管理类数据、科研类数据 以及服务类数据。
从数据产生的技术场景来看,包括 感知数据 、业务数据和互联网数据等类型。
从数据结构化程度来看,包括 结构化数据、半结构化数据和非结构化数据 。结构化数据适合用二维表存储。
从数据产生的环节来看,包括 过程性数据和结果性数据 。过程性数据是活动过程中采集到的、难以量化的数据(如课堂互动、在线作业、网络搜索等);结果性数据则常表现为某种可量化的结果(如成绩、等级、数量等)。
国家采集的数据主要以管理类、结构化和结果性的数据为主,重点关注宏观层面教育发展整体状况。到大数据时代,教育数据的全面采集和深度挖掘分析变得越来越重要。教育数据采集的重心将向非结构化、过程性的数据转变。
三、教育数据的结构模型
整体来说,教育大数据可以分为四层,由内到外分别是基础层、状态层、资源层和行为层。
基础层:也就是我们国家最最基础的数据,是高度保密的数据; 包括教育部2012年发布的七个教育管理信息系列标准中提到的所有数据,如学校管理信息、行政管理信息和教育统计信息等;
状态层,各种装备、环境与业务的运行状态的数据; 必然设备的耗能、故障、运行时间、校园空气质量、教室光照和教学进度等;
资源层,最上层是关于教育领域的用户行为数据。 比如PPT课件、微课、教学视频、图片、游戏、教学软件、帖子、问题和试题试卷等;
行为层:存储扩大教育相关用户(教师、学生、教研员和教育管理者等)的行为数据, 比如学生的学习行为数据、教师的教学行为数据、教研员的教学指导行为数据以及管理员的系统维护行为数据等。
不同层次的数据应该有不同的采集方式和教育数据应用的场景。
关于教育大数据的冰山模型,目前我们更多的是采集一些显性化的、结构性的数据,而存在冰山之下的是更多的非结构化的,而且真正为教育产生最大价值的数据是在冰山之下的。
参考文献:
教育大数据的来源与采集技术 邢蓓蓓
F. 大数据有哪些类型
1、结构化数据
可以以固定格式存储,访问和处理的数据称为“结构化数据”。由于此数据采用类似的格式,因此企业可以通过执行分析来获得最大的收益。还发明了各种先进技术来从结构化数据中提取数据驱动的决策。但是,由于结构化数据的创建已经达到Zettabytes标记,因此世界正朝着这样一个程度发展。
2、非结构化数据
任何以未知形式或结构出现的数据都属于非结构化数据。处理非结构化数据并对其进行分析以获取数据驱动的答案是一项艰巨的任务,因为它们来自不同类别,将它们放在一起只会使情况变得更糟。包含简单文本文件,图像,视频等的组合的异构数据源是非结构化数据的示例。
3、半结构化数据
半结构化数据中同时具有结构化和非结构化数据。我们可以看到半结构化数据是形式化的结构,但实际上它不是在关系DBMS中用表定义来定义的。Web应用程序数据是半结构化数据的示例。它具有非结构化数据,例如日志文件,事务历史记录文件等。OLTP系统旨在与结构化数据一起工作,其中数据存储在关系中。
G. 大数据的结构是什么
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
H. 大数据分析都有哪些类型
1.交易数据大数据平台能够获取时间跨度更大、更海量的结构化买卖数据,这样就能够对更广泛的买卖数据类型进行剖析,不仅仅包含POS或电子商务购物数据,还包含行为买卖数据,例如Web服务器记录的互联网点击流数据日志。
2.人为数据
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及经过博客、维基,尤其是交际媒体产生的数据流。这些数据为运用文本剖析功用进行剖析供给了丰富的数据源泉。
3.移动数据
能够上网的智能手机和平板越来越遍及。这些移动设备上的App都能够追踪和交流很多事情,从App内的买卖数据(如搜索产品的记录事情)到个人信息材料或状况陈述事情(如地址改变即陈述一个新的地理编码)。
4.机器和传感器数据
这包含功用设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备能够配置为与互联网络中的其他节点通信,还能够自意向中央服务器传输数据,这样就能够对数据进行剖析。
关于大数据具有哪些特征,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
I. 大数据的类型都有哪些
大数据的类型大致可分为三类: 传统企业数据 (Traditional enterprise data):包括 CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
J. 什么是大数据,大数据的特征和结构有那些
大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
一是数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
三是价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
四是处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显著特征。