Ⅰ 对于翻译记忆库TM和术语库TB,计算机辅助翻译(computer-aided translation),你有怎样的认识
From Pan Lin
记忆库:本质上说就是个可以根据匹配率自动检索的语料库。可以提高效率,减少重复工作的内容,同时积累该领域的语料,为以后同领域的翻译做准备。记忆库是译者的弹药库,也是CAT软件提高译者效率的核心功能之一。
术语库:就是个内嵌在CAT软件中的自定义词典,译前准备术语,在协同工作中可以提高译文的统一性。
CAT:
1、在不使用翻译插件的情况下,可以提高20-30%的效率,视内容的重复率决定。
2、有很多丰富的插件可以增强功能,如微软语法改错,Tmxmall及各类翻译插件。
3、导出的译文排版和源文档一致,省去了格式转换和排版的步骤。
4、各类CAT软件功能普遍残缺,需要一些辅助软件,如Trados的语料库对齐很难用,用Aligner对齐制作记忆库方便的多。或者是导入PDF的文档识别有问题,需要OCR软件来转成word导入。或者是术语库制作转换,一些第三方比multiterm更方便。
Ⅱ tb级数据库是什么意思
tb级数据库是指数据库整体容量的大小是以T为单位的,比如1.5T ,1T=1024G
Ⅲ ERP中TB什么意思
TB在ERP中表示的是会计学试算表:trial balance
Ⅳ 数据库db是什么意思
db数据库是数据库的一种。
数据库种类:
1、Sqlserver(.mdf,.ldf数据库日志文件);
2、mysql( 数据文件:. myd ;索引文件:. MYI; 表定义文件:. frm;);
3、Access (*.mdb);
4、Oracle(*.DBF *.ora 表空间数据文件);
5、【Paradox(*.DB)】;
6、dBase(*.DBF);
7、FoxPro(*.DBF);
8、MS Works(*.wdb);
9、db2(索引数据 .inx 大对象 .lb, dms表空间);
【说明:目前数据库种类有9种常见的,括号里面为数据库的后缀名(可区别数据库的种类)】
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库。
Ⅳ 怎样打开tb文件
tb文件主要有两种来源,分别有不同的打开方式。通常所见的tb文件,都是一些数据库文件,是使用数据库编写软件Tabbery编程得到的文件。此类文件可以直接使用Tabbery软件进行数据的读取和修改。
有一些tb文件则是腾讯“QQ旋风”下载软件的未完成下载任务,此任务分为已经下载的部分和未下载的部分。未下载的部分仍储存在服务器上,而已经下载的部分将会以.tb或.td的格式进行储存。用户可以将文件的.tb扩展名去掉,直接使用编程工具打开该文件,查看文件的代码部分。由于该文件不完整,因此,用户必须继续进行下载,或者手动为文件加上文件尾,使文件变得可用。
Ⅵ 我看到你提问的问题中有个关于表tb_user我现在做的毕业设计里数据库表也是tb开头的,请问代表什么意思
tb 是table的简写 实际上 这是多余的 重复的 不符合SQL命名规范
Ⅶ 大数据常用哪些数据库(什么是大数据库)
通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQLServer、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Aess等等数据库,这些数据纳卜库支持复杂的SQL操作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。
大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同亏搭步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写操作,从数据库是负责读操作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型
1、列族数据库:BigTable、HBase、Cassandra、AmazonSimpleDB、HadoopDB等,下面简单介绍几个
(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。
(2)HBase:ApacheHbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一销茄拿样的功能。
(3)AmazonSimpleDB:AmazonSimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项
(4)ApacheAumulo:ApacheAumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在ApacheHadoop、Zookeeper和Thrift技术之上。
(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。
(6)AzureTables:为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和ManagedAPI访问。
2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个
(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。
(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。
(4)OracleNoSQLDatabase:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。
(5)OracleNoSQLDatabase:具备数据备份和分布式键值存储系统。
(6)Voldemort:具备数据备份和分布式键值存储系统。
(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。
3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个
(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。
(2)CounchDB:ApacheCounchDB是一个使用JSON的文档数据库,使用Javascript做MapRece查询,以及一个使用HTTP的API。
(3)Couchbase:NoSQL文档数据库基于JSON模型。
(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。
(5)MarkLogic:MarkLogicNoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。
4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个
(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。
(2):一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。
(3):是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS和Prolog推理。
5、内存数据网格:Hazelcast、OracleCoherence、TerracottaBigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个
(1)Hazelcast:HazelcastCE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。
(2)OracleCoherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。
(3)TerracottaBigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。
(4)GemFire:VmwarevFabricGemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。
(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer及client/server架构。
(6)GridGain:分布式、面向对象、基于内存、SQLNoSQL键值数据库。支持ACID事务。
(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。
Ⅷ 数据仓库是什么意思
数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
Ⅸ 数据库是什么东西
问题一:数据库是什么意思? 看了就知道了
数据库(Database)是按照数据耽构来组织、存储和管理数据的仓库,它产生于距今五十年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
问题二:数据库是什么意思? 数据库
data base
为满足某一部门中多个用户多种应用的需要,按照一定的数据模型在计算机系统中组织、存储和使用的互相联系的数据 *** 。
带有数据库的计算机系统,除具备一般的硬件、软件外,必须有用以存储大量数据的直接存取存储设备、管理并控制数据库的软件――数据库管理系统(DBMS)、管理数据库的人员――数据库管理员 (DBA)。这样的数据、硬件、软件和管理人员的总体构成数据库系统。数据库仅是数据库系统的一个组成部分。
数据库系统的功能和特征 数据库系统由文卷系统发展而来。与文卷系统相比,这种系统具有数据、体系和控制三个方面的主要特征。
数据特征 在文卷系统中虽然程序与数据之间可用存取方法进行转换,但文卷还是与应用程序对应的,即数据仍面向应用。每一应用各自建立自己的一组文卷。不同的应用若涉及相同的数据,则这些数据分别纳入各自的文卷之中。文卷的各种记录之间没有建立联系,因而数据冗余度大。增加新的应用,必须同时增加新的文卷。因此,文卷系统中的文卷是无结构的、不易扩充的信息 *** 。数据库则不仅描述数据本身,而且描述数据之间的联系。它的数据结构反映了某一部门的整体信息结构,数据冗余度小、易于扩充新的应用,因而是面向数据总体结构的信息 *** ,可为多个用户共享。
体系特征 一切数据都有逻辑和物理两个侧面。在数据库系统中,数据逻辑结构的描述称为逻辑模式。逻辑模式又分为描述全局逻辑结构的全局模式(简称模式)和描述某些应用所涉及的局部逻辑结构的子模式。数据物理结构的描述称为存储模式。这两种模式总称为数据库模式。
数据库系统中,用户根据子模式编制程序。子模式与模式模式与存储模式之间有软件进行映射。因此,程序与数据之间具有两级独立性:物理独立性和逻辑独立性。数据的存储模式改变,而模式可以不改变,因而不必改写应用程序,这称为物理独立性。模式改变时,子模式可能不改变,也就不必改写应用程序,这称为逻辑独立性。由于数据库系统具备比较高的程序与数据的独立性,可以使程序员在编制应用程序时集中精力考虑算法逻辑,不必过问物理细节,而且可以大大减少应用程序维护的工作量。
控制特征 数据库数据数量庞大,结构复杂,又为多个用户所共享。因此,必须由数据库管理系统在定义、建立、运行以及维护时进行统一管理和控制,以保证数据库数据的安全性、完整性和并发操作的一致性。此外,还必须有数据库管理员专门负责对数据库的管理、控制监督和改进。
由于数据库系统具有上述特征,它的出现使信息系统的研制从围绕加工数据的程序为中心,转变到围绕共享的数据库来进行。这便于数据的集中管理,有利于应用程序的研制和维护。数据减少了冗余度和提高了相容性,从而提高了作出决策的相容性。因此,大型复杂的信息系统大多以数据库为核心,数据库系统在计算机应用中起着越来越重要的作用。
研究课题 数据库研究的课题,主要涉及三个领域。
数据库管理系统软件的研制 DBMS是数据库系统的基础。研制DBMS的基本目标,是扩大功能,提高性能和可用性,从而提高用户的生产率。70年代以来,研制的重点是探索关系数据库管理系统的设计,内容包括关系数据语言、查询优化、并发控制和系统性能等。另一类课题是对DBMS标准化的研究,即研究一个统一的DBMS体系结构的规范。
数据库设计 这是在计算机系统具有的数据库管理系统的基础上,按照应用要求以及计算机系统所提供的数据模型和功能,设计一个结构良好、使用方便、效率较高的,以数据库为核心的应用信息系统。这一领域主要的研究课题,是数据库设计方法学和设计工具的探索。例如,运用软件工程的方法和工具指导数据库设计;......>>
问题三:数据库中<>''是什么意思 是不等号,也有的语言可写作:# 或 !=
问题四:数据库字段是什么意思 一张数据表分为行和列,一行就是一跳记录。可储有很多个字段,就是各个属性。比如一张Student 表,里面有studentname,id等字段,是站一列的。他们合起来组成一跳记录。
问题五:数据库中%是什么意思 通配符,% 包含零个或更多字符的任意字符串,
比如在查找的时候用MM%畅可以查找出以MM开头的字段,
问题六:数据库到底是什么学科 数据库就是一个库,里面有很多很多的数据
哈哈哈,开个玩笑,不过事实的确如此,数据库既不是系统也不是软件,就是很多的数据按照某种方式放在一起而已。
你应该用过excel,看过excel表吧,所谓数据库就是很多张那样存数据的表,并把数据存在这些表里。(当然还要包括表里面数据的索引,表和表的关系等等一些比较复杂的东西,在这里就不说了)。
而使用数据库的原贰就是数据实在太多,而使用数据库可以方便快速地从很多数据里搜索、修改数据信息。你可以假想一个大超市,里面有几千种货品,几十万条货品纪录,而你需要从多个接入点(超市的多个收银台...)纪录并修改这些货品进货、售出信息的时候,数据库就发挥出它的威力来了。
另外数据库都是需要软件支持的,常用的有sql server/oracle/pb等等数据库。至于所谓“做数据库”,应该就是用某种数据库软件进行建立数据库的操作了,这个……真的是太复杂啦,如果你有兴趣可以找一些相关方面内容学习一下。我就说这么多了,累死我了...
回
问题七:什么是数据库文件? MDF是数据库文件,LDF是日志文件
1)主文件。主文件是某特定应用领域的永久性的数据资源。主文件包含那些被定期存取以提供信息和经常更新以反映最新状态的记录。典型的主文件有库存文件、职工主文件和收帐主文件等。
(2)事务文件。事务文件包含着作为一个信息系统的数据活动(事务)的那些记录。这些事务被分批以构成事务文件。例如,从每周工资卡上录制下来的数分批存放在一个事务文件上,然后对照工资清单文件进行处理以便打印出工资支票和工资记录簿。
(3)表文件。表文件是一恭表格。之所以单独建立表文件而不把表设计在程序中是为了便于修改。例如,一个公用事业公司的税率表或国内税务局的税率就可以存储在表中文件。
(4)备用文件。备用文件是现有生产性文件的一个复制品。一旦生产性文件受到破坏,利用备用文件就可以重新建立生产性文件。
(5)档案文件。档案文件不是提供当前处理使用的,而是保存起来作为历史参照的。例如,国内税务局(IRS)可能要求检查某个人最近15年的历史。实际上,档案文件恰恰是在给定时间内工作的一个快照。
(6)输出文件。输出文件包含将要打印在打印机上的、显在屏幕上的或者绘制在绘图仪上的那些信息的数值映象。输出文件可以是假脱机的(存储在辅存设备上),当输出设备可
用时才进行实际的输出。
问题八:数据库中@代表什么意思 ]@]@]
是:局部变量声明,如果没有@的字段代表是列名;
eg:
声明变量: declare @name varchar(8)
赋值: set @name= '张三'
查询: select * from stuInfo where stuName = @name
由set 和 select 进行赋值;
select一般用于查询数据,然后再赋值变量。
还有
error 等是全局变量,系统自定义的,我们只读,不能改!!
问题九:什么是 手机数据库? 你好 很高兴可以回答你的问题手机可以正常打开么? 你先试试刷机 如果不行的话 就是主板的问题了 修一下很贵的 攻如换新手机 建议硬格或者刷机解决
问题十:数据库中的用户是什么意思 指的的是你使用者的人数
Ⅹ 数据库和大数据的区别
对于数据库研究人员和从业人员而言,从数据库(DB)到大数据(BD)的转变可以用“池塘捕鱼”到“大海捕鱼”做类比。“池塘捕鱼”代表着传统数据库时代的数据管理方式,而 “大海捕鱼”则是大数据时代的数据管理方式。这些差异主要体现在如下几个方面:
1、数据规模
数据库和大数据最明显的区别就是规模。数据库规模相对较小,即便是先前认为比较大的数据库,比如 VLDB(Very Large Database),和大数据XLDB(Extremely Large Database)比起来还是差很远。
数据库的处理对象一般以 MB 为基本单位,而大数据则是GB、TB、PB 为基本处理单位。