㈠ 常用数据校验方法有哪些
奇偶校验”。内存中最小的单位是比特,也称为“位”,位有只有两种状态分别以1和0来标示,每8个连续的比特叫做一个字节(byte)。不带奇偶校验的内存每个字节只有8位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其8个位上存储的数据是固定的,因为位只能有两种状态1或0,假设存储的数据用位标示为1、1、 1、0、0、1、0、1,那么把每个位相加(1+1+1+0+0+1+0+1=5),结果是奇数,那么在校验位定义为1,反之为0。当CPU读取存储的数据时,它会再次把前8位中存储的数据相加,计算结果是否与校验位相一致。从而一定程度上能检测出内存错误,奇偶校验只能检测出错误而无法对其进行修正,同时虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误。
MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc 发明,由 MD2/MD3/MD4 发展而来的。MD5的实际应用是对一段Message(字节串)产生fingerprint(指纹),可以防止被“篡改”。举个例子,天天安全网提供下载的MD5校验值软件WinMD5.zip,其MD5值是,但你下载该软件后计算MD5 发现其值却是,那说明该ZIP已经被他人修改过,那还用不用该软件那你可自己琢磨着看啦。
MD5广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,来验证该用户的合法性。
MD5校验值软件WinMD5.zip汉化版,使用极其简单,运行该软件后,把需要计算MD5值的文件用鼠标拖到正在处理的框里边,下面将直接显示其MD5值以及所测试的文件名称,可以保留多个文件测试的MD5值,选定所需要复制的MD5值,用CTRL+C就可以复制到其它地方了。
参考资料:http://..com/question/3933661.html
CRC算法原理及C语言实现 -来自(我爱单片机)
摘 要 本文从理论上推导出CRC算法实现原理,给出三种分别适应不同计算机或微控制器硬件环境的C语言程序。读者更能根据本算法原理,用不同的语言编写出独特风格更加实用的CRC计算程序。
关键词 CRC 算法 C语言
1 引言
循环冗余码CRC检验技术广泛应用于测控及通信领域。CRC计算可以靠专用的硬件来实现,但是对于低成本的微控制器系统,在没有硬件支持下实现CRC检验,关键的问题就是如何通过软件来完成CRC计算,也就是CRC算法的问题。
这里将提供三种算法,它们稍有不同,一种适用于程序空间十分苛刻但CRC计算速度要求不高的微控制器系统,另一种适用于程序空间较大且CRC计算速度要求较高的计算机或微控制器系统,最后一种是适用于程序空间不太大,且CRC计算速度又不可以太慢的微控制器系统。
2 CRC简介
CRC 校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。
16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以 )后,再除以一个多项式,最后所得到的余数既是CRC码,如式(2-1)式所示,其中B(X)表示n位的二进制序列数,G(X)为多项式,Q(X)为整数,R(X)是余数(既CRC码)。
(2-1)
求CRC 码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。生成CRC码的多项式如下,其中CRC-16和CRC-CCITT产生16位的CRC码,而CRC-32则产生的是32位的CRC码。本文不讨论32位的CRC算法,有兴趣的朋友可以根据本文的思路自己去推导计算方法。
CRC-16:(美国二进制同步系统中采用)
CRC-CCITT:(由欧洲CCITT推荐)
CRC-32:
接收方将接收到的二进制序列数(包括信息码和CRC码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误,关于其原理这里不再多述。用软件计算CRC码时,接收方可以将接收到的信息码求CRC码,比较结果和接收到的CRC码是否相同。
3 按位计算CRC
对于一个二进制序列数可以表示为式(3-1):
(3-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(3-2)所示:
(3-2)
可以设: (3-3)
其中 为整数, 为16位二进制余数。将式(3-3)代入式(3-2)得:
(3-4)
再设: (3-5)
其中 为整数, 为16位二进制余数,将式(3-5)代入式(3-4),如上类推,最后得到:
(3-6)
根据CRC的定义,很显然,十六位二进制数 既是我们要求的CRC码。
式(3 -5)是编程计算CRC的关键,它说明计算本位后的CRC码等于上一位CRC码乘以2后除以多项式,所得的余数再加上本位值除以多项式所得的余数。由此不难理解下面求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,0x1021与多项式有关。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位计算CRC虽然代码简单,所占用的内存比较少,但其最大的缺点就是一位一位地计算会占用很多的处理器处理时间,尤其在高速通讯的场合,这个缺点更是不可容忍。因此下面再介绍一种按字节查表快速计算CRC的方法。
4 按字节计算CRC
不难理解,对于一个二进制序列数可以按字节表示为式(4-1),其中 为一个字节(共8位)。
(4-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(4-2)所示:
(4-2)
可以设: (4-3)
其中 为整数, 为16位二进制余数。将式(4-3)代入式(4-2)得:
(4-4)
因为:
(4-5)
其中 是 的高八位, 是 的低八位。将式(4-5)代入式(4-4),经整理后得:
(4-6)
再设: (4-7)
其中 为整数, 为16位二进制余数。将式(4-7)代入式(4-6),如上类推,最后得:
(4-
很显然,十六位二进制数 既是我们要求的CRC码。
式(4 -7)是编写按字节计算CRC程序的关键,它说明计算本字节后的CRC码等于上一字节余式CRC码的低8位左移8位后,再加上上一字节CRC右移8位(也既取高8位)和本字节之和后所求得的CRC码,如果我们把8位二进制序列数的CRC全部计算出来,放如一个表里,采用查表法,可以大大提高计算速度。由此不难理解下面按字节求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,CRC余式表是按0x11021多项式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二进制数的形式暂存CRC的高8位 */
crc<<=8; /* 左移8位,相当于CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和当前字节相加后再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很显然,按字节求CRC时,由于采用了查表法,大大提高了计算速度。但对于广泛运用的8位微处理器,代码空间有限,对于要求256个CRC余式表(共512字节的内存)已经显得捉襟见肘了,但CRC的计算速度又不可以太慢,因此再介绍下面一种按半字节求CRC的算法。
5 按半字节计算CRC
同样道理,对于一个二进制序列数可以按字节表示为式(5-1),其中 为半个字节(共4位)。
(5-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(4-2)所示:
(5-2)
可以设: (5-3)
其中 为整数, 为16位二进制余数。将式(5-3)代入式(5-2)得:
(5-4)
因为:
(5-5)
其中 是 的高4位, 是 的低12位。将式(5-5)代入式(5-4),经整理后得:
(5-6)
再设: (5-7)
其中 为整数, 为16位二进制余数。将式(5-7)代入式(5-6),如上类推,最后得:
(5-
很显然,十六位二进制数 既是我们要求的CRC码。
式(5 -7)是编写按字节计算CRC程序的关键,它说明计算本字节后的CRC码等于上一字节CRC码的低12位左移4位后,再加上上一字节余式CRC右移4位(也既取高4位)和本字节之和后所求得的CRC码,如果我们把4位二进制序列数的CRC全部计算出来,放在一个表里,采用查表法,每个字节算两次(半字节算一次),可以在速度和内存空间取得均衡。由此不难理解下面按半字节求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,CRC余式表是按0x11021多项式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暂存CRC的高四位 */
crc<<=4; /* CRC右移4位,相当于取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本字节的前半字节相加后查表计算CRC,
然后加上上一次CRC的余数 */
da=((uchar)(crc/256))/16; /* 暂存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相当于CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本字节的后半字节相加后查表计算CRC,
然后再加上上一次CRC的余数 */
ptr++;
}
return(crc);
}
[code]
5 结束语
以上介绍的三种求CRC的程序,按位求法速度较慢,但占用最小的内存空间;按字节查表求CRC的方法速度较快,但占用较大的内存;按半字节查表求CRC的方法是前两者的均衡,即不会占用太多的内存,同时速度又不至于太慢,比较适合8位小内存的单片机的应用场合。以上所给的C程序可以根据各微处理器编译器的特点作相应的改变,比如把CRC余式表放到程序存储区内等。[/code]
hjzgq 回复于:2003-05-15 14:12:51
CRC32算法学习笔记以及如何用java实现 出自:csdn bootcool 2002年10月19日 23:11 CRC32算法学习笔记以及如何用java实现
CRC32算法学习笔记以及如何用java实现
一:说明
论坛上关于CRC32校验算法的详细介绍不多。前几天偶尔看到Ross N. Williams的文章,总算把CRC32算法的来龙去脉搞清楚了。本来想把原文翻译出来,但是时间参促,只好把自己的一些学习心得写出。这样大家可以更快的了解CRC32的主要思想。由于水平有限,还恳请大家指正。原文可以访问:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。
二:基本概念及相关介绍
2.1 什么是CRC
在远距离数据通信中,为确保高效而无差错地传送数据,必须对数据进行校验即差错控制。循环冗余校验CRC(Cyclic Rendancy Check/Code)是对一个传送数据块进行校验,是一种高效的差错控制方法。
CRC校验采用多项式编码方法。多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,如同逻辑异或运算。
2.2 CRC的运算规则
CRC加法运算规则:0+0=0
0+1=1
1+0=1
1+1=0 (注意:没有进位)
CRC减法运算规则:
0-0=0
0-1=1
1-0=1
1-1=0
CRC乘法运算规则:
0*0=0
0*1=0
1*0=0
1*1=1
CRC除法运算规则:
1100001010 (注意:我们并不关心商是多少。)
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
10011,.,,....
10011,.,,....
-----,.,,....
00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
-----,....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 余数
2.3 如何生成CRC校验码
(1) 设G(X)为W阶,在数据块末尾添加W个0,使数据块为M+ W位,则相应的多项式为XrM(X);
(2) 以2为模,用对应于G(X)的位串去除对应于XrM(X)的位串,求得余数位串;
(3) 以2为模,从对应于XrM(X)的位串中减去余数位串,结果就是为数据块生成的带足够校验信息的CRC校验码位串。
2.4 可能我们会问那如何选择G(x)
可以说选择G(x)不是一件很容易的事。一般我们都使用已经被大量的数据,时间检验过的,正确的,高效的,生成多项式。一般有以下这些:
16 bits: (16,12,5,0) [X25 standard]
(16,15,2,0) ["CRC-16"]
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]
三: 如何用软件实现CRC算法
现在我们主要问题就是如何实现CRC校验,编码和解码。用硬件实现目前是不可能的,我们主要考虑用软件实现的方法。
以下是对作者的原文的翻译:
我们假设有一个4 bits的寄存器,通过反复的移位和进行CRC的除法,最终该寄存器中的值就是我们所要求的余数。
3 2 1 0 Bits
+---+---+---+---+
Pop <-- | | | | | <----- Augmented message(已加0扩张的原始数据)
+---+---+---+---+
1 0 1 1 1 = The Poly
(注意: The augmented message is the message followed by W zero bits.)
依据这个模型,我们得到了一个最最简单的算法:
把register中的值置0.
把原始的数据后添加r个0.
While (还有剩余没有处理的数据)
Begin
把register中的值左移一位,读入一个新的数据并置于register的0 bit的位置。
If (如果上一步的左移操作中的移出的一位是1)
register = register XOR Poly.
End
现在的register中的值就是我们要求的crc余数。
我的学习笔记:
可为什么要这样作呢?我们从下面的实例来说明:
1100001010
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
-》 10011,.,,....
10011,.,,....
-----,.,,....
-》 00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
我们知道G(x)的最高位一定是1,而商1还是商0是由被除数的最高位决定的。而我们并不关心商究竟是多少,我们关心的是余数。例如上例中的G(x)有5 位。我们可以看到每一步作除法运算所得的余数其实就是被除数的最高位后的四位于G(x)的后四位XOR而得到的。那被除数的最高位有什么用呢?我们从打记号的两个不同的余数就知道原因了。当被除数的最高位是1时,商1然后把最高位以后的四位于G(x)的后四位XOR得到余数;如果最高位是0,商0然后把被除数的最高位以后的四位于G(x)的后四位XOR得到余数,而我们发现其实这个余数就是原来被除数最高位以后的四位的值。也就是说如果最高位是0就不需要作XOR的运算了。到这我们总算知道了为什么先前要这样建立模型,而算法的原理也就清楚了。
以下是对作者的原文的翻译:
可是这样实现的算法却是非常的低效。为了加快它的速度,我们使它一次能处理大于4 bit的数据。也就是我们想要实现的32 bit的CRC校验。我们还是假设有和原来一样的一个4 "bit"的register。不过它的每一位是一个8 bit的字节。
3 2 1 0 Bytes
+----+----+----+----+
Pop <-- | | | | | <----- Augmented message
+----+----+----+----+
1<------32 bits------> (暗含了一个最高位的“1”)
根据同样的原理我们可以得到如下的算法:
While (还有剩余没有处理的数据)
Begin
检查register头字节,并取得它的值
求不同偏移处多项式的和
register左移一个字节,最右处存入新读入的一个字节
把register的值和多项式的和进行XOR运算
End
我的学习笔记:
可是为什么要这样作呢? 同样我们还是以一个简单的例子说明问题:
假设有这样的一些值:
当前register中的值: 01001101
4 bit应该被移出的值:1011
生成多项式为: 101011100
Top Register
---- --------
1011 01001101
1010 11100 + (CRC XOR)
-------------
0001 10101101
首4 bits 不为0说明没有除尽,要继续除:
0001 10101101
1 01011100 + (CRC XOR)
-------------
0000 11110001
^^^^
首4 bits 全0说明不用继续除了。
那按照算法的意思作又会有什么样的结果呢?
1010 11100
1 01011100+
-------------
1011 10111100
1011 10111100
1011 01001101+
-------------
0000 11110001
现在我们看到了这样一个事实,那就是这样作的结果和上面的结果是一致的。这也说明了算法中为什么要先把多项式的值按不同的偏移值求和,然后在和 register进行异或运算的原因了。另外我们也可以看到,每一个头字节对应一个值。比如上例中:1011,对应01001101。那么对于 32 bits 的CRC 头字节,依据我们的模型。头8 bit就该有 2^8个,即有256个值与它对应。于是我们可以预先建立一个表然后,编码时只要取出输入数据的头一个字节然后从表中查找对应的值即可。这样就可以大大提高编码的速度了。
+----+----+----+----+
+-----< | | | | | <----- Augmented message
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+-----> +----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
以下是对作者的原文的翻译:
上面的算法可以进一步优化为:
1:register左移一个字节,从原始数据中读入一个新的字节.
2:利用刚从register移出的字节作为下标定位 table 中的一个32位的值
3:把这个值XOR到register中。
4:如果还有未处理的数据则回到第一步继续执行。
用C可以写成这样:
r=0;
while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];
可是这一算法是针对已经用0扩展了的原始数据而言的。所以最后还要加入这样的一个循环,把W个0加入原始数据。
我的学习笔记:
注意不是在预处理时先加入W个0,而是在上面算法描述的循环后加入这样的处理。
for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因为若有W个0,因为我们以字节(8位)为单位的,所以是W/4个0 字节。注意不是循环w/8次
以下是对作者的原文的翻译:
1:对于尾部的w/4个0字节,事实上它们的作用只是确保所有的原始数据都已被送入register,并且被算法处理。
2:如果register中的初始值是0,那么开始的4次循环,作用只是把原始数据的头4个字节送入寄存器。(这要结合table表的生成来看)。就算 register的初始值不是0,开始的4次循环也只是把原始数据的头4个字节把它们和register的一些常量XOR,然后送入register中。
3A xor B) xor C = A xor (B xor C)
总上所述,原来的算法可以改为:
+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
算法:
1:register左移一个字节,从原始数据中读入一个新的字节.
2:利用刚从register移出的字节和读入的新字节XOR从而产生定位下标,从table中取得相应的值。
3:把该值XOR到register中
4:如果还有未处理的数据则回到第一步继续执行。
我的学习笔记:
对这一算法我还是不太清楚,或许和XOR的性质有关,恳请大家指出为什么?
谢谢。
到这,我们对CRC32的算法原理和思想已经基本搞清了。下章,我想着重根据算法思想用java语言实现。
hjzgq 回复于:2003-05-15 14:14:51
数学算法一向都是密码加密的核心,但在一般的软路加密中,它似乎并不太为人们所关心,因为大多数时候软体加密本身实现的都是一种编程上的技巧。但近几年来随著序列号加密程序的普及,数学算法在软体加密中的比重似乎是越来越大了。
我们先来看看在网路上大行其道的序列号加密的工作原理。当用户从网路上下载某个Shareware -- 共享软体后,一般都有使用时间上的限制,当过了共享软体的试用期后,你必须到这个软体的公司去注册后方能继续使用。注册过程一般是用户把自己的私人信息(一般主要指名字)连同信用卡号码告诉给软体公司,软体公司会根据用户的信息计算出一个序列码出来,在用户得到这个序列码后,按照注册需要的步骤在软体中输入注册信息和注册码,其注册信息的合法性由软体验证通过后,软体就会取消掉本身的各种限制。这种加密实现起来比较简单,不需要额外的成本,用户购买也非常方便,在网上的软体80%都是以这种方式来保护的。
我们可以注意到软体验证序列号的合法性过程,其实就是验证用户名与序列号之间的换算关系是否正确的过程。其验证最基本的有两种,一种是按用户输入的姓名来生成注册码,再同用户输入的注册码相比较,公式表示如下:
序列号 = F(用户名称)
㈡ 数据分析的分析方法有哪些
数据分析的分析方法有:
1、列表法
将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。
2、作图法
作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。
图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。
图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。
(2)以名字命名的数据检验方法有哪些扩展阅读:
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
㈢ 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
㈣ 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
㈤ 统计学中常用的数据分析方法有哪些
1、描述统计
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析、离中趋势分析和相关分析三大部分。
2、假设检验
参数检验:参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
3、信服分析
介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。
㈥ 数据分析方法有哪些
一、描述性统计
描述性统计是一类统计方法的汇总,揭示了数据分布特性。它主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布以及一些基本的统计图形。
1、缺失值填充:常用方法有剔除法、均值法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以在做数据分析之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、回归分析
回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律。
1. 一元线性分析
只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量Y或其残差必须服从正态分布。
2. 多元线性回归分析
使用条件:分析多个自变量X与因变量Y的关系,X与Y都必须是连续型变量,因变量Y或其残差必须服从正态分布。
3.Logistic回归分析
线性回归模型要求因变量是连续的正态分布变量,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。
4. 其他回归方法:非线性回归、有序回归、Probit回归、加权回归等。
三、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
1. 单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系。
2. 多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3. 多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4. 协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,降低了分析结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法。
四、假设检验
1. 参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。
2. 非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
1)虽然是连续数据,但总体分布形态未知或者非正态;
2)总体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。