1. 电商平台应该分析哪些数据具体怎么去分析
电子商务平台需要分析的数据及分析规则如下:
一、网站运营指标:
网站运营指标主要用于衡量网站的整体运营情况。在这里,EC数据分析联盟暂时将网站运营指标分为网站流量指标、商品类别指标和供应链指标。网站流量指标主要用于考虑网站优化、网站可用性、网站流量质量和客户购买行为。
商品类别指标主要用于衡量网站商品的正常运营水平,与销售指标和供应链指标密切相关。这里的供应链指标主要是指电子商务网站的商品库存和商品配送,而不考虑商品的生产和原材料的库存和运输。
二、商业环境指标:
这里,电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括市场占有率、市场拓展率、网站排名等,这些指标通常使用第三方研究公司的报告数据。与独立的B2C网站相比,淘宝在这方面的数据要准确得多。
网站内部购物环境指标包括功能指标和运营指标(这部分与之前的流量指标一致)。常见的功能指标包括商品种类的多样性、支付配送方式、网站正常运行、连接速度等。
三、销售业绩指标:
销售业绩指标与公司的财务收入直接挂钩,在所有数据分析指标体系中起着主导作用。其他数据指标可根据该指标进行细分。
网站销售绩效指标主要关注网站订单的转化率,而订单销售指标主要关注具体毛利率、订单效率、重复采购率、退货率和汇率。当然,还有很多指标,如总销售额、品牌类别销售额、总订单、有效订单等,这里没有列出。
四、营销活动指标:
营销活动的成功通常从活动效果(收入和影响)、活动成本和活动凝聚力(通常通过用户注意力、活动用户数量和客户单价来衡量)等方面来考虑。在这里,营销活动指标分为日常市场运营活动指标、广告宣传指标和对外合作指标。
其中,市场经营活动指标和广告投放指标主要考虑新增客源数量、订单数量、订单转化率、每次访问成本、每次转化收益和投资回报。而对外合作的指标则由具体的合作伙伴来确定。例如,电子商务网站与返利网合作时,首先考虑的是合作的回报。
5、客户价值指数:
顾客价值通常由三部分组成:历史价值(过去消费)、潜在价值(主要从用户行为考虑,以RFM模型为主要衡量依据)、附加价值(主要从用户忠诚度、口碑推广等方面考虑)。这里,客户价值指标分为总体客户指标和新老客户价值指标。
这些指标主要从客户贡献和购置成本两个方面来衡量。例如,我们使用访客数量、访客成本和从访客到订单的转换率来衡量总体客户价值指数。除了上述考虑之外,老客户价值的衡量更多的是基于RFM模型。
(1)电商库存数据要做哪些分析扩展阅读:
电子商务中使用分析数据的优点:
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。
一般来说,单个数据索引的分析并不能解决这个问题,而且每个索引都是相互关联的。将所有索引编织成一个网络,并根据具体需要找到每个数据索引节点。当用户在电子商务网站上有购买行为时,他们会从潜在客户转变为网站的价值客户。
电子商务网站一般将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息存储在自己的数据库中,因此,这些客户可以根据网站的运营数据来分析自己的交易行为,估计每个客户的价值以及为每个客户拓展营销的可能性。
参考资源来源:
网络-电子商务数据分析
2. 电商怎么分析数据
电商分析数据方法如下:
一、依据用户画像,洞察需求
用户画像即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
二、依据渠道数据分析用户来源
对电商卖家来说,分析“访客数”最重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和关键词排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。
三、店内转化率的数据分析
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:
1、销售转化率 ——已购买的用户和全部来到店铺的用户比值。
2、平均订单价值 —— 用户下单的平均金额。
3、放弃购物车率—— 在所有产生的订单中,未完成订单的占比。
四、提高营销推广的ROI
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
五、产品数据分析
1、产品数据分分析
①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后最终下单的人数。
②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
2、销量数据分析
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况最佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
六、用户留存数据分析
聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。
七、用户推荐数据分析
对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友推荐,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。
3. 电商怎么分析数据
电商分析数据的方法如下:
1、对比分析我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。
2、转化分析,这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:岁弊基
(1)店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。
(2)平均消费金额:店铺每年平均每卜喊位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。
(3)用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用乎谨户也会推荐给更多朋友来购买。
3、留存分析我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。
4、产品比价。这个时候就需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。
4. 电商平台应该分析哪些数据具体怎么去分析
电商三个底层因素:曝光、点击、反馈,可以从这三个纬度进行深入分析。例如影响曝光的因素有关键词的数量和排名,一个词代表着一个被买家找到的渠道,能覆盖越全越好,排名跟你排在第几页有关,我们都知排名越前被买家看到点击的概率越大,目前大部分电商平台的第一页很多都是付费的位置,所以这里面会涉及到付费工具的使用问题了,工具包含了固定排名、顶级展位、直通车、橱窗、信用保障、评价体系等,剩余的才是自然排名,自然排名是建立匹配的基础上去延伸排序的。点击的影响因素很多,几个重点的要去关注优化:产品相关度、图片质量、排名位置、评价体系、信用保障、销量、回复率等。反馈的影响因素我只提两点:产品内容描述页和旺铺。
5. 电商平台应该分析哪些数据具体怎么去分析
最重要的就是这几个了:
1 、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存枝蚂神分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度物哗等;
以上可视化图表均猛亏来自BDP个人版、
6. 电商数据分析指标都有哪些该如何进行分析
此文是对最近学习的电商相关知识点做一个巩固
传统零售利用二八法则生存,电商靠长尾理论积累销售。
传统零售是小数据,电商是大数据。
传统零售是“物流”,零售过程就是商品的流动;电商是“信息流”,顾客通过搜索、比较、评论、分享产生信息,达到购买的目的。
传统零售注重体验感,电商注重服务和效率。
传统零售是做加法,电商是做乘法。传统零售是通过一家家店扩大影响力,电商通过资金的投入迅速抢占市场。
传统零售的主要成本是房租和人工成本,电商的主要成本是物流和营销成本。
总结:电商和传统零售虽有千万种差别,但总归都是零售,融合是二者注定的趋势,即现在火热的新零售。
传统零售的数据主要是进销存数据、顾客数据和消费数据。电商的数据却复杂得多,数据来源渠道也很多样化
电商数据来源广泛,常规的流量数据、交易数据、会员数据在品牌的交易平台都有提供。一些第三方网站也提供数据源及分析功能。
1、网络统计:包括流量相关的网站统计、推广统计、移动统计三部分内容。分析内容包括趋势分析、来源分析、页面分析、访客分析、定制分析和优化分析。
2、谷歌分析:包括流量分析工具、内容分析、社交分析、移动分析、转化分析、广告分析几部分内容。
3、Crazy egg热力图:主要特色是对页面热点追踪分析的热力图。
4、CNZZ数据专家(友盟):包括站长统计、全景统计、手机客户端、云推荐、广告管家、广告效果分析和数据中心等。
还有一些无需埋点监测数据的产品,如GrowingIO、神策数据、诸葛io等。
以下为用思维导图进行梳理的电商数据分析指标,总共包括六大类
对访问你网站的访客进行分析,基于这些数据指标可以网页进行改进
这里需要注意两个点
1)影响因素不同:UV 价值更受流量质量的影响;而客单价更受卖的货的影响;
2)使用场景不同:UV 价值可以用来评估页面 / 模块的创造价值的潜力;客单价可以用来比较品类和商品特征,但一个页面客单价高,并不代表它创造价值的能力强,只能得出这个页面的品类更趋近于是卖高价格品类的。
如果网站是为了帮助客户尽快完成他们的任务(比如:购买,答疑解惑),那么在线时长应当是越短越好;如果希望客户一同参与到网站的互动中来,那么时间越久会越好。所以,分析在线时长是否越长越好,要根据产品定位来具体分析
从注册到成交整个过程的数据,帮助提升商品转化率。
对于一个新电商来说,积累数据,找准营运方向比卖多少货,赚多少钱更重要。这个阶段主要 关注流量指标 ,指标如下:
对于已经经营一段时间的电商,通过数据分析 提高店铺销量 就是首要任务。此阶段的重点指标是 流量和销售指标 ,指标如下:
对于已经有规模的电商,利用数据分析 提升整体营运水平 就很关键。重点指标如下:
数据指标分为追踪指标、分析指标和营运指标,营运指标就是绩效考核指标。一个团队的销售额首先是追踪出来的,其次是分析出来的,最后才是绩效考核出来的。销售追踪自然是按天、按时段说话,分析一般是以周和月为单位,绩效考核常常是以月为主、以年为辅。
执行人员侧重过程指标,管理层侧重结果指标。对于数据分分析人员来说要学会根据职位提供不同的数据。
1、无流量不电商,对于流量分析,我们常用漏斗图来做分析,几乎每个流量的细分都可以用到漏斗图。
2、漏斗图就是一个细分和溯源的过程,通过不同的层次分解从而找到转化的逻辑。
3、漏斗图的弱点,就是反应一条转化路径的形态,我们可以稍加修改实现漏斗图的对比功能。
1、流量的质量分为质和量两方面,只有质没有量的流量是没有多少实际价值的,流量的质体现在不同的营销目的上,例如获得点击、注册、收藏、购买或者获取利润的目的。
2、可以通过四象限分析图来对比分析流量的质量。下图是针对购买的转化率和流量的四象限图,其中第一象限的流量应该是高质量的,流量和转化率均高于平均值;第二象限渠道的流量转化率高,但量不大,通过搜索来的流量大部分属于此类;第四象限流量属于质低量高,站外购买的流量这种情况比较多;第三象限属于质低量低的双低流量,不用特别维护,任其发展即可。
3、图中的Y轴可以根据具体的分析目的替换成点击率、注册率、收藏率、ROI(单元产出)等进行对比分析。
四象限分析图中,X轴、Y轴、分析对象都可以根据不同的目的进行替换。
4、散点图的四象限分析可以结合趋势,或者演变成四象限气泡图,气泡图的大小为ROI,这种四象限图信息量更大。
1、电商的销售针对比传统零售复杂很多,主要复杂在流量的多层次多渠道上,互联网的好处是几乎能将用户的每个动作记录下来,然后我们从中找到关键点进行诊断即可。下图,是一个类似杜邦分析的图,从值(图中红色)和率(图中蓝色)两个方面,订单、新客、老客三个维度将销售额拆成五个层次,每个层次间具有加或乘的逻辑关系。
2、销售额是一个结果指标,图中的20个指标是过程指标,每个指标的变化都会影响最终的销售额,基本都是正相关。(折扣和销售额的关联会稍微复杂一些)
3、通过上图,使用对比、细分的原则分析可以判断出哪儿些指标变化对销售额产生了影响。
参考书籍为《数据化管理——洞悉零售及电子商务运营》
7. 电商怎么做数据分析
电商数据分析的常用方法有:逻辑树分析法;PEST分析法;多维度拆解法;对比分析法;假设检验分析法。
1、逻辑树分析:逻辑树分析法的目的是把复杂的问题变简单,即把一个问题当成树干,然后找出所有充当树枝的子问题,并以此类推,逐步找到一个个具体而直接的子问题,从而找到解决复杂问题的方法。
2、PEST分析法:用于做行业分析,是通过政治Politics,经济Economy,社会Society和技术Technology四个因素来分析宏观环境的方法,其应用领域有公司战略规划,市场经营规划,产品发展规划,撰写研究报告等。
3、多维度拆解法:目的是从多个维度思考问题,即从多个角度出发,把一个复杂问题拆解成多个简单的子问题去解决,其把问题整体拆解成多个部分,通过对比可以看出不同整体之间部分的差异。
4、对比分析法:通过对比找差异,从而追踪业务是否存在问题的方法。使用对比分析法,要搞清楚两个问题,一是和谁比,二是如何比。
5、假设检验分析法:归因分析,即分析问题发生的原因,其底层逻辑是逻辑推理,分为3个步骤,分别是:提出假设,收集证据,得出结论。
8. 电商平台应该分析哪些数据具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
一、时间维度
从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不碧销罩过周相对用的少。
二、商品类别、价格维度
本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):
这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较悔闹多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为运营者应该很了解的斗拿,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻奢侈品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!
9. 如何做电商数据分析
目前我也从事数据分析,主要用到的是数据透视表;主要是提供一些报表供领导参考。其实我感觉应该用到了5W2H分析法,领导还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存清仓表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。电商数据分析,往往可以通过这样几个步骤:
1.建立完整的数据追踪体系
2.对获取到的数据报表进行分析,找出其中问题
3.针对从数据中找到的问题提出解决方案,评估解决方案的实现成本,并着手改进
一、首先建立数据追踪体系。
电商网站中比不可少的是网站的点击流数据,这个数据通常可以通过安装数据追踪工具来实现:如GoogleAnalytics,CNZZ等。需要注意的是,电商网站中往往会涉及到网站销售,因此需要对网站数据统计工具进行配置,获得销售订单数据。
除此之外,除了点击流数据还需要其他数据,比如不同的销售渠道会涉及到不同的数据:
1.搜索引擎优化,搜索引擎站长工具后台数据,其他SEO数据
2.搜索引擎营销(竞价)竞价后台数据
3.社交媒体:社交媒体后台数据
4.展示类广告投放广告搭晌亩投放平台数据等
从这些后台中拉出报表,看趋势,按照不同的维度细分,找谨改出问题
三、提出解决方案
根据数据中发现的问题,结合业务需要,给出解决的方法。重要的是需要评估好工作量和成本,不可以做盲目的改动。电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,推荐大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,永久免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。谢谢采纳也是学徒级别,学习中!经济基知森础环境(网络可达性、物流可达性、支付可得性);
市场活跃状况及供需关系(网络活跃度指数、网络消费价格指数、网络经营价格指数、网络融资环境指数);
经济规模走势(网络消费指数、网络投资指数、网络贸易指数);
经济总量(电子商务经济增加值、电子商务就业量)
洛阳儒墨科技公司——产业电商经济数据监测、预测与政策模拟平台
10. 电商数据分析的基本流程
电商数据分析的基本流程如下:
1.明确分析目标:首先需要明确分析的目标,例如提高销售额、改善用户体验等。
2.数据采集:收集与目标相关的数据,这些数据包括网站流量、订单数据、用户凯键罩行为数据等等。
3.数据清洗:对采集到的数据进行清洗、筛选,保证数据的准确性和完整性。
4.数据处理:对数据进行处理和分析,例如数据统计、数据建模、数据挖掘等等。
5.数据可视化:盯闹通过图表、报表等形式,将处理后的数据呈现出来,更好地理解和分析数据。
6.数据解读:对分析结果进行解读和总结,发现数据背后的规律和趋势。
7.制定行动计划:根据分析结果,制定相应的行动计划,例如优化网站、改善用户体验、优化产品等等。
8.实施和监控:实施行动计划,并定期监控分析结果,不断进行优化和调整,以达到分析目标。
以上是电商数据分析的基本流程,其中需要注意亮锋的是,在整个流程中需要保证数据的准确性和可靠性,并结合业务实际情况,灵活调整分析方法和策略。