① 数据挖掘需要哪些基础
人工智能、机器学习、模式识别、统计学、数据库、可视化技术等。
数据挖掘从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息,数据挖掘主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据;
作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。
② 学习数据挖掘需要那些基础知识
入门推荐你看《机器学习实战》,不需要你跑去学习算法和数据结构,不需要解析几何的知识,但是数理统计的基础你必须要有,期望、方差、常用的几种概率分布,尤其注意一下条件概率,因为朴素贝叶斯模型你一定要懂,线性代数至少你要明白矩阵乘法、行列式计算,再就是微积分知识,不然你看不懂所有基于梯度下降法的文献,行业内用的比较多的是c++,java和python,推荐你用python,很多模型不需要你造轮子,python有相关的第三方模块,很方便。
数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,但实际上这些知识大多是相通的,机器学习实战这本书是我看的启蒙书里很好的一本了,该有的都有,难度较小,有理论有实践,可以较快的对各种知识有个大概的了解,但是想要长期在这个行业发展,还需要学习更多的知识,比如说提到回归模型,你不仅仅要知道最小二乘法,你还要想到怎么进行数据清洗、哪些数据需要清洗,怎么规范数据,数据是否过多,要不要进行归约和降维,采用哪种回归模型,精确度大致要达到什么水平,要不要考虑过拟合和欠拟合,要不要进行交叉验证,几折交叉验证效果好,如果回归模型不适用,有哪些备选方案。比如说决策树模型,书上简单的讲了个if-then就完了,按照什么规则生成树,怎么分层,要不要剪枝,最终的效果怎么样,造成误差的原因是模型太复杂还是太简单,怎么综合其他模型对决策树进行改进,数据的聚类方法用k均值还是DBSCAN,需要对数据进行分类的时候要考虑数据量大不大,SVM还是神经网络,数据量计算机吃不吃得消,一次吃不消该怎么做,等你对这些有了大致的了解之后,好好看看《统计学习方法》这本书,深入地了解一下理论部分,看一看核心部分的数学模型,看一看如何算法实现,着重理解一下拉格朗日微分法和拉格朗日对偶,解决等式约束和不等式约束很有用,这个也是使用智能算法尝试解决NP完全问题的一个结合点。
除了看书以外,其他时间全部用在学习编程上,python常用的numpy、matplotlib、scipy、sklearn、nltk这些包你都要大致了解怎么用,推荐你看看图灵程序设计丛书里的《python学习手册》《python自然语言处理》《python科学计算》,至少要知道怎么定义类、方法、属性,常用模块里有哪些好用的方法,常见的异常怎么排除,其他的在有时间的时候随用随学,至于算法和数据结构,有时间的话看看《算法导论》,肯定有所收获。
至于说书单就上豆瓣搜一搜,评分高的一般都比较靠谱,英文版的也比较靠谱
③ 数据挖掘工程师需要懂哪些知识
1、需要理解主流机器学习算法的原理和应用。
2、需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。
3、需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。
4、经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。
④ 数据挖掘需要学习哪些知识
1.统计知识
在做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
2.概率知识
而朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
3.数据挖掘的数据类型
那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。
4.数据仓库
什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造 。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
关于数据挖掘需要学习哪些知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑤ 数据挖掘需要什么基础
1.学好各项数学基础课,主要就是线性代早激数,概率论、统计学等。
2.程序语言,比如c++/java和python,再加个matlab之类的方便应用的语言。
3.会一些机器学习的课程,了解这个领域具体在研究的东西,看点公开课或者书籍。
4.英语基础好,基本读写能力可以。
5.相关计算机方面知识梳理。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家陆没袜系统(依靠过去的经验法则)察辩和模式识别等诸多方法来实现上述目标。
⑥ 数据挖掘的相关学科有哪些
数据挖掘涉及的学科:统计学、数据库系统、数据仓库、信息检索、机器学习、应用、模式识别、可视化、算法、高性能计算、数理统计、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像与信号处理、空间数据分析等。
数据挖掘是一个比较传统的研究方向,是从大量的、随机的、不完全的、有噪声的、模糊的数据中,提取隐含在其中、人们事先不知道又潜在有用信息和知识的过程。数据挖掘需要根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、规则推理、决策树、模糊集、甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期的目标,都需要回到前面的步骤,重新调整并执行。数据挖掘需要综合运用计算机、数学以及统计学的相关知识。在大数据时代,数据挖掘被赋予了更丰富的含义,研究范围也有了相应的拓展。
想更多了解数据挖掘相关的学科,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。