Ⅰ 矩阵是什么意思
在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
矩阵分解:
将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩戚闭悉阵的分解法一般有高乎三角分解、谱分解、奇异值分解、满秩分解等。
在线性代数中,相似矩阵是指存在相似关系的矩阵态闭。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
Ⅱ 聚类分析聚类算法中包含哪些数据类型
聚类分析聚类算法中包含哪些数据类型
许多基于内存的聚类算法采用以下两种数据结构:
(1)数据矩阵(Data Matrix,或称对象一变盘结构):用p个变量来表示n个对象,例如使用年龄、身高、性别、体重等属性变量来表示对象人,也叫二模矩阵,行与列代表不同实体:
(2)相异度矩阵(Dissimilarity Matrix,又称为对象一对象结构):存储所有成对的n个对象两两之间的近似性(邻近度),也叫单模矩阵,行和列代表相同的实体。其中d(ij)是对象i和对象j之间的测量差或相异度。d(i,f)是一个非负的数值,d(ij)越大,两个对象越不同;d (i,j)越接近于0,则两者之间越相似(相近)。
许多聚类算法都是以相异度矩阵为基础的,如果数据是用数据矩阵形式表示,则往往要将其先转化为相异度矩阵。
相异度d(i,j)的具体计算会因所使用的数据类型不同而不同,常用的数据类型包括:区间标度变量,二元变量,标称型、序数型和比例标度型变量,混合类型的变量。