❶ 几种数据采集的方式哪个好
讨论几种针对各种软件系统的数据采集的方式方法。重点关注它们的实现过程、各自的优缺点。
软件接口对接方式
开放数据库方式
基于底层数据交换的数据直接采集方式
1、 软件接口对接方式
各个软件厂商提供数据接口,实现数据汇集,为客户构建出自己的业务大数据平台;
接口对接方式的数据可靠性较高,一般不存在数据重复的情况,且都是客户业务大数据平台需要的有价值的数据;同时数据是通过接口实时传递过来,完全满足了大数据平台对于实时性的要求。
但是接口对接方式需花费大量人力和时间协调各个软件厂商做数据接口对接;同时其扩展性不高,比如:由于业务需要各软件系统开发出新的业务模块,其和大数据平台之间的数据接口也需要做相应的修改和变动,甚至要推翻以前的所有数据接口编码,工作量很大且耗时长。
2、 开放数据库方式
一般情况,来自不同公司的系统,不太会开放自己的数据库给对方连接,因为这样会有安全性的问题。为实现数据的采集和汇聚,开放数据库是最直接的一种方式。
不同类型的数据库之间的连接就比较麻烦,需要做很多设置才能生效,这里不做详细说明。
开放数据库方式可以直接从目标数据库中获取需要的数据,准确性很高,是最直接、便捷的一种方式;同时实时性也有保证;
开放数据库方式需要协调各个软件厂商开放数据库,其难度很大;一个平台如果要同时连接很多个软件厂商的数据库,并且实时都在获取数据,这对平台本身的性能也是个巨大的挑战。
3、基于底层数据交换的数据直接采集方式
101异构数据采集的原理是通过获取软件系统的底层数据交换、软件客户端和数据库之间的网络流量包,进行包流量分析采集到应用数据,同时还可以利用仿真技术模拟客户端请求,实现数据的自动写入。
实现过程如下:使用数据采集引擎对目标软件的内部数据交换(网络流量、内存)进行侦听,再把其中所需的数据分析出来,经过一系列处理和封装,保证数据的唯一性和准确性,并且输出结构化数据。经过相应配置,实现数据采集的自动化。
基于底层数据交换的数据直接采集方式的技术特点如下:
1)独立抓取,不需要软件厂家配合;
2)实时数据采集;
数据端到端的延迟在数秒之内;
3)兼容Windows平台的几乎所有软件(C/S,B/S);
作为数据挖掘,大数据分析的基础;
4)自动建立数据间关联;
5)配置简单、实施周期短;
6)支持自动导入历史数据。
目前,由于数据采集融合技术的缺失,往往依靠各软件原厂商研发数据接口才能实现数据互通,不仅需要投入大量的时间、精力与资金,还可能因为系统开发团队解体、源代码丢失等原因出现的死局,导致了数据采集融合实现难度极大。在如此急迫的需求环境下基于底层数据交换的数据直接采集方式应运而生,从各式各样的软件系统中开采数据,源源不断获取所需的精准、实时的数据,自动建立数据关联,输出利用率极高的结构化数据,让数据有序、安全、可控的流动到所需要的企业和用户当中,让不同系统的数据源实现联动流通,为客户提供决策支持、提高运营效率、产生经济价值。
❷ 教育大数据是什么教育大数据作用有哪些
本文主要内容是介绍教育大数据的定义与作用,在了解教育大数据前我们首先要了解什么是大数据。大数据技术是21世纪最具时代标志的技术之一。国务院发布的《促进大数据发展行动纲要》中提出“大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合”。简单的说,大数据就是将海量碎片化的信息数据能够及时地进行筛选、分析,并最终归纳、整理出我们需要的资讯。
教育大数据,顾名思义就是教育行业的数据分析应用。
而大数据,则需要具备5V的特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
其中的“大”主要指的是 Volume(大量),我们现阶段用的数据分析,大部分情况下的数据量还达不到这个“大”的级别。
教育行业在数据分析的应用方面,主要痛点有以下四个方面:
1.数据涉及面窄
数据主要来源为数字化校园系统产生的,其他教学管理的数据多为手工录入非结构化数据
数据维度少,数据来源不足。
2.数据接口不完善
内部信息系统的教务系统、一卡通系统、图书馆系统、财务系统等数据都不规范一致,数据结构也不一样,各业务系统接口对接难度大
业务接口与数据结构还不规范
3.缺乏统一的数据管理平台
没有统一的数据处理中心对数据进行管理,没有人力维护各系统的接入
有效数据量少,数据质量差,达不到大数据处理分析要求
在具体的应用方面,即数据分析体系搭建上,可以在以下四个方面开展。
1.教务管理
在这方面可以进行招生分析、就业分析、住宿分析、图书馆分析、资产数据统计分析等。
2.教学创新
在这里可以进行教学质量评估、上网行为分析、学生成绩分析、学生特长能力分析
3.应用创新
可以进行学生轨迹分析、学生画像、学生舆情监控
4.科研支撑
可以开展科研成果分析统计、科研项目研究、科研经费跟踪研究,对整个科研情况有全面的了解和掌握。
1.大数据或把老师从作业批改中解放
在线教育除了能以优质教育资源为学生提供帮助外,对广大家长、老师和学校也大有裨益。苏静以作业帮家长版的“口算批改”功能为例介绍,家长或老师只需要用手机对着学生作业一扫,就能立刻对作业完成智能批改,显示出批改结果,能够大大节省老师和家长批改作业的时间。
事实上,随着人工智能等新兴技术的深入应用,在线教育平台能够为家长、老师、学校提供更有效的教学辅助。
2.因材施教,将更有的放矢
“人工智能+大数据精准教育”系统能利用大数据技术,完成对学生学习进度、学力、习惯的跟踪和分析,系统后台能够准确对用户进行用户画像,找到他们的知识薄弱点,形成用户学情报告,这可以帮助老师和学校更细致地了解每一个学生的情况,并有的放矢地制定更精准的学生学习计划。
❸ 企业数据对接能力包括哪些
具体如下。
1.平滑自如的水平伸缩能力,从容应对海量数据
平滑自如的水平伸缩能力是数据中台必须具备的,特别是在数据体量迅速膨胀的今天,不具备存储和计算水平伸缩能力的平台是很难生存的,好在今天几乎所有的大数据技术都是分布式的,这赋予了数据中台天然的水平伸缩能力。
2.对资源拥有细粒度的控制能力,支持多任务、多用户下的作业处理
作为中心化的平台,企业不同部门和团队的数据都会存放在上面,每天会有大量的定时和即席作业运行,因此数据中台必须具备“多租户”的数据管理能力,对资源能进行细粒度的切分和调控。以Hadoop上的资源管理平台Yarn为例,通过定义各种动态资源分配策略,可以很好地协调各种作业之间的资源使用情况,确保各个业务线和不同用户的数据处理任务能及时有序地执行。
3.强大的实时处理能力
实时数据处理能力是以往传统数据平台所不具备的,这是数据中台的一大优势和亮点,通过实时处理我们可以将业务情况实时地反馈给用户,极大地缩短了业务用户的等待时间,提升了用户体验,在一些大促活动期间(如双11),实时计算的时效性对于业务决策的支持作用会更加重要。
4.参与业务请求处理的能力
依托于实时计算能力,数据中台将有机会参与在线的业务处理,特别是在那些需要基于大量数据处理才能给出响应的业务请求(如用户积分的实时计算),过去这些处理都是通过批处理作业在夜间完成的,时效性和用户体验很差,现在通过数据中台可以实时地计算出结果并反馈给业务系统,这使得数据平台也开始参与在线的业务处理了。
5.具备人工智能及机器学习的数据分析能力
这是目前数据分析和应用领域最看重的能力,是当前数据分析领域的“皇冠”,它所带来的数据洞察能力是以往传统数据分析方法无法企及的,没有这种能力的数据中台是不完善的。这部分能力一般是通过在大数据平台上集成相关组件实现的(如SparkMLib),但也有很多算法不能满足实际需要,因此需要集成一些第三方的算法库和集群环境作为补充。
6.以数据仓库理论管理和组织各类数据
数据仓库无疑是企业对于数据组织和管理的事实标准,不管是传统平台还是大数据平台,数据仓库理论都是科学有效的数据管理方法,可以说“没有数据仓库的大数据平台是没有灵魂的”。通过数据仓库体系的治理,企业数据的质量会得到大幅提升,也更利于前台的使用。
7.对外提供强大的数据服务,支持多种协议的数据传输与交互
过去的数据平台基本上都是将处理好的数据存放在关系型数据库中,供外围系统通过连接数据库的方式自行获取,可以说这是最低水平的数据服务,一个好的数据平台一定要提供强大的数据服务以便让数据需求方更容易和便捷地获取数据。平台支持的协议和方式越丰富,越能容易地帮助各业务中心和前台应用,加速集成和对接,降低企业整体的研发成本。而灵活便捷的数据获取方式又会吸引企业的数据供给方将数据主动放到数据中台上,从而享受数据中台带来的“红利”。
8.拥有完善的数据治理体系,数据质量能够得到有效保障
数据治理是贯穿数据平台建设全过程的一项工作,它是技术和管理方式的一种综合手段。数据中台一般会引入一些专业的数据治理工具对数据质量进行把控,这些工具会根据预定义的业务和技术规则定期抽检目标数据进行验证,并给出数据质量报告。为了配合数据治理,企业在管理上也应该成立相应的组织或机构来负责,这是建设数据中台在管理方面要做的工作之一。
9.精准的细粒度安全控制
数据中台要提供技术和管理上的多重机制保障企业的数据安全。从技术上看,数据中台需要提供严格的认证与授权机制来管理每一个使用平台的用户(包括自然人账户和应用系统账户),提供健全的数据加密与脱敏机制对敏感数据进行特殊处理,同时对每类数据的所有人、使用者和读写权限都要有明确的记录和追踪,对账户创建和授权申请都要有完备的审批机制。
以上就是数据中台必须具备的9个能力。了解更多关于数据中台原理与实现的内容,你可以关注《数据中台实战课》专栏,以下是专栏目录。你可以使用极客视点专属口令,享受立减优惠。
❹ 数据分析工具类软件,好用的有哪些
分析软件有Excel、SPSS、MATLAB、 SAS、Finereport等 其中Excel我就不多说了相信大家都懂。 SPSS是世界上最早采用图形菜单驱动界面的统计软件它将几乎所有的功能都以统一、规范的界面展现出来。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足大部分的工作需要。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境使用的。 其优点如下: 一、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 二、 具有完备的图形处理功能,实现计算结果和编程的可视化; 三、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 四、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。 但是这款软件的使用难度较大,非专业人士不推荐使用。 SAS是把数据存取,管理,分析和展现有机地融为一体。其功能非常强大统计方法齐,全,新。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。不过这款软件的使用需要一定的专业知识,非专业人士不推荐使用。 Finereport类EXCEL设计模式,EXCEL+绑定数据列”形式持多SHEET和跨SHEET计算,完美兼容EXCEL公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说 数据支持与整合、聚合报表、数据地图、Flash打印、交互分析等