导航:首页 > 数据分析 > 可视化数据分析学哪些

可视化数据分析学哪些

发布时间:2023-04-11 10:10:53

『壹』 数据分析要学习哪些

数据分析所需要学习的知识:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

『贰』 数据分析可视化有哪些类型

数据可视化实训总结

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。总结怎么写才不会千篇一律呢?下面是我精心整理的数据可视化实训总结,仅供参考,希望能够帮助庆梁仔到大家。

数据可视化实训总结1

数据可视化是指将数据间的关系利用图表直观地展示出来。通过数据可视化将大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可从不同的维度观察数据,从而对数据进行更深入的观察和分析。

一、数据分析可视化常用的图表类型有如下几种:

1、表格

2、散点图

3、折线图

4、柱状图

5、条形图

二、可视化分析

2.1想分析购买数量前10名的用户是否是回头客还是客单量大?

对该渣巧项分析使用 表格 分析,按购买数量排名前10的用户根据购买日期的次数分析:都是一次性购买,并非回头客用户,企业应该想办法维护这些大客户群。

2.2 根据2.1分析结果继而想到那些回头客购买力度怎么样呢?从而再次对后买日期统计,分析购买次数多的用户:得出本次共分析29944个用户,回头客只有25个,占比0.083%;其中只有1名用户是购买4次的, 其余24名用户只购买2次。商家需要拉些回头客,考虑是否质量过关,是否活动力度不够?

使用一个饼状图更直接看出回头客比重之小

2.3 根据商品种类cat_id统计出销量前10名的商品种类,使用条形图做了可视化分析:

2.4 对20xx年和20xx年总销量分别按照月度和按照季度做 折线图 可视化分析,很明了看出销售变化趋势如下;11月度销量最高,第四季度销量最高。

2.5 分析表2数据,想知道哪个年龄段的儿童服装销量比较高?如下分别用 柱形图 和 散点图 进行可视化图表分析(感觉点状图效果稍好一些),可以看出相同年龄段的男女生销量走势是一致的,且随着年龄增长销量呈下降趋势。

若以3岁为一个阶段,0—3岁为婴儿期间的销量最高,淘宝和天猫市场需求量大。

三、作为数据分析职责的思想总结

在此总结下两篇初步学习数据分析的心得:数据分析首先要掌握常用的数据分析方法,数据分析工具,然后再根据自己公司的产品调整,灵活组合。接下来我要系统学习数据分析知识。数据分析师是一个实践的职位,要在实际项目中不断的训练,才能成为高手。

作为数据分析师我认为的主要职责是要将业务数据清晰、准确、明了的呈现给数据使用者和决策者,比如预测用户的流失,对用户进行自动分类等。你能提供的价值大了。决策者和管理者能够根据呈现的数据结果及时合理调整业务活动,以使企业得到利润最大化。

数据可视化实训总结2

一、数据可视化的定义

数据可视化(Data Visualization)是涉及信息技术、自然科学、统计分析、图形学、交誉汪互、地理信息等多种学科交叉领域,通过将非数字的信息进行可视化以表现抽象或复杂的概念和信息的技术。简单的说,这种技术将数据以图表的方式呈现,用以传递信息。人类有五官,能通过5种渠道感受这个物质世界,那么为什么单单要青睐可视化的方式来传递信息呢?这是因为人类利用视觉获取的信息量巨大,人眼结合大脑构成了一台高带宽巨量视觉信号输入的并行处理器,具有超强模式识别能力,有超过50%功能用于视觉感知相关处理的大脑,大量视觉信息在潜意识阶段就被处理完成,人类对图像的处理速度比文本快6万倍,所以数据可视化是一种高带宽的信息交流方式。

如果我们的视野再开阔些,数据可视化从广义上来说包含了三个分支:科学可视化(Scientific Visualization),信息可视化(Information Visualization)和可视分析学(Visual Analytics)。科学可视化是跨学科研究与应用领域,关注三维现象的可视化,在建筑学、气象学、医学或生物学方面的各种系统中有广泛的应用,这个领域研究的数据具有天然几何结构(如磁感线、流体分布等)。

scientific_data_viz。png

信息可视化则研究抽象数据的交互式视觉表示以加强人类认知。抽象数据包括数字和非数字数据,如地理信息与文本,这个领域研究的数据具有抽象的结构,比如柱状图,趋势图,流程图和树状图,这些图表将抽象的概念转化成为可视化信息,常常以数据面板的形式体现。

info_data_viz。png

可视分析学结合了交互式视觉表示以及基础分析过程(统计过程、数据挖掘技术),执行高级别、复杂的活动(推理、决策)。

viz_analysis。png

二、在数据科学全过程中的位置

数据科学的主要组成部分包含三个大的阶段:数据整理,探索性数据分析和数据可视化。站在一个更高的位置来看,数据可视化在数据科学中的位置是比较靠后的,是属于最后的成果展示阶段。如果要从头说起的话,首先,在数据整理阶段,我们的主要任务是数据的获取和解析,包括一系列对原始数据的清洗和加工工作,这一块的知识领域主要涉及计算机科学。紧接着是探索性数据分析阶段,这个阶段要大量使用统计和数据挖掘方面的专业知识,也需要绘制图表来解释数据和探索数据,这个阶段的主要任务是过滤和挖掘。但这个阶段的可视化分析只是你和数据之间的“对话”,是数据想要告诉你什么,而数据可视化则是数据和你的读者之间的对话,是你通过数据想要告诉读者什么,这是它们之间最大的区别。完成了上面两个阶段的内容,才到了我们最后的数据可视化阶段,这是一个多学科交叉的领域,涉及到图形设计,信息可视化和人机交互,我们的主要任务是对信息进行精炼,然后通过可视化表示出来,并与读者产生交互。然而,如果将数据科学的这三个阶段理解为按严格顺序进行的“线性”的模型那就大错特错了,它经历的是一个迭代的,非线性的过程。后面的步骤会让你更了解之前所做的工作,可能到了数据可视化阶段,才意识到还有太多疑点要弄明白,我们需要回到上一步重新进行之前的工作,就像画家翻来覆去才能最终完成一幅杰作一样,数据可视化的过程并不是给数据分析这个刚出炉的蛋糕加点糖霜,,而是有一个反复迭代,不断优化的过程。

三、数据可视化的技术栈

数据可视化是一个再典型不过的多学科交叉领域了,可以说数据可视化所需要用到的知识,就是数据科学庞大知识体系的一个剪影。你会感受到数据科学理性的.一面,同样也会感受到她感性的一面。你可以穷尽自己的一生,在这个浩如烟海的领域中尽情的探索,常学常新,其乐无穷。

四、数据可视化过程

数据可视化的本质,是充分理解业务的基础上对数据进行深入分析和挖掘,然后将探索数据所得到的信息和知识以可视化的形式展现出来。也就是说我们做的工作其实就是从数据空间映射到图形空间。我们要做的第一步工作是充分的结合业务理解数据,然后采用某些方法选择合适的图表类型,这又要求我们先对图表类型有个比较全面的了解。绘制完图表是不是就完成了呢?其实不是。我们还要对图表进行优化,优化所针对的对象是各种图表元素,对此我们有一系列的设计技巧,下面将一步一步的来介绍这些知识。

4.1 结合业务理解数据

离开对业务的理解谈数据分析都是耍流氓。这里介绍一种快速了解数据与业务以开展进一步的探索与分析的方法,叫“5W2H法”。

步骤一:WHAT,这是关于什么业务的什么事?数据所描述的业务主题是什么?

步骤二:HOW,即如何采集的数据?采集规则会影响后续分析,比如如果是后端数据埋点,那么数据一般是实时的;而如果是前端数据埋点,那么就要进一步弄清楚数据在什么网络状态会上传?无网络状态下是如何处理的?这些都会影响最后数据的质量进而影响分析质量。

步骤三:WHY,为什么搜集此数据?我们想从数据中了解什么?数据分析的目标是什么?

步骤四:WHEN,是何时段内的业务数据?

步骤五:WHERE,是何地域范围内的业务数据?

步骤六:WHO,谁搜集了数据(Who)?在企业内可能更关注是来自哪个业务系统。

步骤七:HOW MUCH,各种数据有多大的量,足够支持分析吗?数据充足和不足的情况下,分析方法是有所不同的。如果七个问题中有一个答复不能令人满意,则表示这方面有改进余地。

4.2 选择图表类型

用简单的三个步骤就可以选择合适的图表类型:一看数据类型,二看数据维度,三看要表达的内容。

我们有两种数据类型,每种数据类型又有两个子类别。首先,我们有分类数据和定量数据。分类数据用来表示类别,比如苹果,香蕉,梨子和葡萄,就是水果的4种类别,称为分类定类;有的分类变量是有一定顺序的,比如可以把红酒的品质分为低,中,高三档,人的身材有偏瘦,正常和肥胖等等,这种特殊的分类变量称为分类定序。定量数据也可以进一步分为两类,一类叫连续值数据,比如人的年龄;一类叫离散值数据,比如猫咪的数量。

『叁』 数据分析之常见的数据可视化方法有哪些

【导读】现如今已然是大数据时代,许多企业的发展离不开数据分析。大数据可视化分为不同的类型:探索型和解释型。勘探类型帮助人们发现数据背后的故事,而解析数据方便给人们看。那么,在数据分析中,常见的数据可视化方法有哪些呢?今天就跟随小编一起来了解下吧!

时态

时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。

多维

可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。

分层

分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。

网络

在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。

以上就是小编今天给大家整理分享关于“数据分析之常见的数据可视化方法有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

『肆』 数据分析要重点学哪些内容

首先说的是数据挖掘,所谓数据挖掘就是去寻找数据、挖掘数据,从大量的数据中学会寻找出自己需要的数据,这样才能够为数据分析做好前提准备。所以我们在学习数据挖掘的时候一定要注重基本功,这样才能成为一个出色的数据挖掘师。

然后说数据可视化,在前面我们提到了Python和r语言,掌握了其中的基础,我们还需要学习数据可视化这个技能,数据可视化就是将数据分析结果用很简单的方式呈现出来,数据可视化的目的就是能够让客户或者普通人能够看懂这数据的分析结果。而数据可视化这个不是比较重要,所以大家在学习的时候抓住要点进行学习即可。

接着说计算机语言,数据分析使用的语言只有两种,就是Python和R语言,并非是C语言或者Java语言。Python的基本语法一定要掌握好,学会使用Python爬虫获得数据,这样能够做好数据挖掘。而r语言就是为了统计而产生的语言,通过掌握r语言的基础语法和数据建模来对数据进行统计,从而方便数据分析的进一步分析工作。

最后要说的就是统计学以及sql,这两个属于数据分析师的必备技能。任何一个数据分析师必须要掌握这两个技能,而统计学是往业务方面发展的,sql是往技术方面发展的,这两个技能可以根据自己想要发展的方向进行重点学习,当然,这些技能都是要学扎实的。不过sql是一定要会的,不管是运营、产品经理、互联网行业一定要学会sql,就目前而言,任何一个知名的互联网公司的产品经理都会sql。

『伍』 数据分析需要掌握些什么知识

数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。

『陆』 数据分析师要学哪些课程

首先给大家说明一下数据分析的技术学习,而技术学习有几个层面的内容要学习。首先,我们需要对数据库或者其他渠道中获得数据。很多人对于数据获取方面还是要靠很多人,在现在对于数据的获取只能靠自己了,对于数据的获取是需要sql工具,而sql工具就是为了统计取数而生的工具,而sql工具一般是解决中型数据,Excel可以应对小型数据的分析。当然,还需要学习r语言、Python、spss等数据,这样才能够提供数据的挖掘能力。当然还需要学习数据库的内容,将数据纳入数据库的本领也需要掌握,学好了这些才能够做好数据分析。

然后给大家说一下关于统计的内容,统计学是数据分析中至关重要的课程,不管是在业务方面发展还是在技术方面发展都需要重视数据分析工作,大家在学习统计方面知识的时候一定要学会里面的数据分析思维框架,这样才能够对日后的数据分析工作有很好的帮助。

『柒』 数据分析需要学哪些

数据分析第一步就是要学习excel,从基本操作、函数公式、数据透视表、数组等等,都要熟悉。要重点说一下excel函数公式,个人觉得函数公式是数据分析的基础,拉个透视表实在不算啥,能熟练地运用函数公式,那才是牛人。

如果对编程很惧怕,那就直接跳过VBA,下面就是powerBI。powerBI的发展完全出乎我的预料,因为在我看来,powerBI就是一个可视化的工具,没有什么分析功能,但是学员以及学员的老板都喜欢,我也不好说什么。powerBI在数据整理、可视化方面做得还不错,反正现在是热点。

数据分析软件

如果是比较专业地做数据,我建议学一个工具,就是SPSS,这个是统计分析的入门级大牌软件,SPSS搞清楚了,基本的统计概念、模型都搞清楚了。下面一个就是VBA,VBA是一个很传统老旧的工具,但是在excel环境中,超级实用。

曾经有学员跟我说,其实VBA就可以搞定大部分工作上的问题了。数据库方面也需要掌握,mysql是一个很好的选择,掌握了mysql,数据库的基本原理就清楚了。

再往下,就是专业数据分析工具了,有两个选择python和R,我个人倾向于python,python现在更流行热门一点。最后说一句,伤其五指不如断其一指,干任何事情讲的都是专业性,不太需要杂家,以上讲的工具,任何一个要做到牛人级别都很难,都需要努力学习。




『捌』 数据分析主要学习的内容有哪些

没有任何事情是能够速成的,越是像数据分析这种收益周期长的技能,越是这样。

但这并不代表,我们不能用一些有意思的方式,把学习的过程变得高效而有裤如袭趣。这篇文章是要给所有正在橡简学习数据分析,甚至还没入门的同学一个高效的学习路径,让更多人可以平滑地、高效地成为专业数据分析师。


学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题。有了这个目标,你就可以知道要达成这样的目标,它的知识体系是怎么样的。霍营电脑培训认为只有明确的目标导向,学习最有用的那部分知识,才能避免无效信息降低学习效率。


如果你要成为数据分析师,那么你可以去招聘网站看看,对应的职位的需求是什么,一般来说你就会对知识体系有初步的了解。企业对技能需求可总结如下:


SQL数据库的基本操作,会基本的数据管理


会用Excel/SQL做基本的数据提取、分析和展示


会用脚本语言进行数据分析,PythonorR


有获取外部数据的能力加分,如爬虫或熟悉公开数据集


会基本的数据可视化技能,能撰写数据报告


熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法


其次是数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:


高效的学习路径是什么就是数据分析的这个流程。按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点胡兄,哪些知识是暂时不必要的。


每学习一个部分,你就能够有一些实际的成果输出,有正向的反馈,你才会愿意花更多的时间投入进去。以解决问题为目标,效率自然不会低。


『玖』 数据分析需要学哪些

数据分析需要学习以下几点:

一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。

想要成为数据分析师应该重点学习以下两点:

1.python、SQL、R语言

这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。

2.业务能力

数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。

当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。


关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。

『拾』 学习数据可视化分析需要哪些知识

  1. 书籍:推荐《数据可视化》,很全面,很够了;

  2. 工具:先学好EXCEL,然后学会一些可视化工具,如BDP个人版等。

  3. 思维要清晰,要结合具体数据。

其他还有很多努力的只是,加油。

阅读全文

与可视化数据分析学哪些相关的资料

热点内容
用友软件如何找回账套数据 浏览:964
怎样变换文件存储格式 浏览:208
飞常准的数据来自哪里 浏览:844
ug100如何编程画线 浏览:870
文件夹999找不到 浏览:145
win1014393最新版本号 浏览:100
java基本类型大小 浏览:516
word2007不能插入页码 浏览:968
vb读取文件并判断 浏览:6
php图片和程序分离 浏览:412
安卓面试非计算机专业 浏览:228
u盘的光盘文件怎么驱动 浏览:34
如何锁定c盘不下文件 浏览:359
浙江推广网站建设怎么做 浏览:478
word文件只有10页怎么增加 浏览:921
itunes下载的系统在哪个文件夹 浏览:605
个性化linux全名要求 浏览:40
数据表格制图小红点如何去掉 浏览:244
查询iphone版本信息失败怎么办 浏览:978
电脑版微信下载的文件保存在哪里 浏览:367

友情链接