1. 大数据是做什么的
1.在当今这个时代人们对大数据这个词并不陌生,都明白在这个互联网时代会有各种的大数据产生,那么数据分析就会显得格外的重要。那什么是大数据呢,其实呀并不难理解,大数据就是指超过传统数据库系统处理能力的数据。生活上,工作上很多方面都会从大数据中得到结论,有很多用其他方法难以得到的信息,通过分析数据,就变得一目了然。比如呢,科技公司他们提供的价值的很大一部分来自他们的数据,他们不断对其进行分析提高效率并开发新产品。可想而知大数据的重要性
2.如果你也想从事大数据这方面的工作,这里介绍一下大数据要学习和掌握的知识与技能:
①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。
②spark:专为大规模数据处理而设计的快速通用的计算引擎。
③SSM:常作为数据源较简单的web项目的框架。
④Hadoop:分布式计算和存储的框架,需要有java语言基础。
⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。
⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。
3.随着互联网时代的到来,人们愈发认识到现代科技与计算机技术的重要性,无论是互联网头部企业对IT技术的研发应用还是普通企业的发展需要都可以看出IT行业正处于如日中天的发展态势下,行业竞争同样十分激烈随着人工智能、物联网的发展、大数据人才急剧增加,所以大数据行业的就业前景一片光明。如果你想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,建议实地考察对比一下。
祝你学有所成,望采纳。
2. 大数据到底是什么行业啊,具体是干什么的啊
这不是某个行业,它是一个大数据分析,也就是说不断的收集数据,然后进行分析,然后对行业的发展有帮助。
3. 大数据是指什么如何解释
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
搜索下各种网络,上面都有。说白了,就是数据量非常庞大。这确实是近几年的热点问题。
4. “大数据”是什么东西
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
(4)宁海县大数据是什么扩展阅读:
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效地利用分析这些数据等等。
大数据的趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
5. 大数据是干什么的
大数据的意义不仅仅在于生产和掌握庞大的数据信息,更重要的是对有价值的数据进行专业化处理。
人类从来不缺数据,缺的是对数据进行深度价值挖掘与利用。可以说,从人类社会有了文字以来,数据就开始存在了,现在亦是如此。这其中唯一改变的是数据从产生,到记录,再到使用这整个流程的形式。
在金融行业中,以借贷款为例。在贷款前,贷款借出方会先利用大数据对借款人进行贷前审核,以此来保障贷后的还款率。
借出方从各个渠道合法收集借款人的标签信息,如学历,职业,薪资状况,历史借还款情况等(据说一个用户的标签维度可以达到7000个)。海量数据被放入反欺诈模型,还款能力模型,身份验证模型等数个中做训练,最终得出是否通过本次贷款申请,贷款的额度,贷款人的还款意愿等评估信息。
数据生产
在人类社会的早期,民以食为天,数据的产生大多与商品,食物,土地等挂钩。旧石器时代的部落人民在树枝或骨头上刻下凹痕来记录日常的交易活动或物品供应。
为了衡量商品长度,中国人发明了尺、里、寸、丈、步、仞等长度单位;为了衡量重量,发明了升、斗,斛等重量单位。
在互联网时代,数据的生产变得更为容易。美国互联网数据中心曾指出,互联网上的数据每年都将增长50%,每两年便将翻一倍,而目前世界上90%以上的数据是最近几年才产生的。
每人每天都会产生海量数据,如视频数据,电商数据,社交数据等等。
6. “大数据”是什么意思请举例说明。
大数据指无法在一定时间范围内用常规软件工 具进行捕捉、管理和处理的数据集合,是需要新处理模式
才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据历史和当前考虑因素
虽然术语“大数据"相对较新,但收集和存储大量信息以进行最终分析的行为已经很久了。这个概念在
21世纪初获得了动力,当时行业分析师Doug Laney将现在主流的大数据定义表达为三个V :
1.卷,组织从各种来源收集数据,包括业务交易,社交媒体和来自传感器或机器到机器数据的信息。在过
去,存储它将是-一个问题-但新技术(如Hadoop)减轻了负担。
2.速度,数据以前所未有的速度流入,必须及时处理。RFID 标签,传感器和智能电表正在推动近乎实时
处理数据的需求。
3.品种,数据有各种格式-从传统数据库中的结构化数字数据到非结构化文本文档,电子邮件,视频,
音频,股票报价数据和金融交易。
7. 大数据是做什么的
目前大数据已经在营销、金融 、工业、医疗、教育、交通、保险、执法、体育、政府、旅游、物流等领域广泛应用。
一句话 大数据就是管理和利用大量数据的。
分开来讲就是数据如何产生、数据如何搬运、数据如何存储、数据有效的整理起来方便使用、数据如何进行加工提高价值、数据怎么使用,管理这整个生命周期。
数据的产生:就是数据的源头,我们怎么来生产数据。有业务上用的数据比如MySQL中的用户表,有前端埋点(监控用户的每个操作),有程序输出的日志数据,有爬虫爬来的数据。这么多数据的源头,我们需要一个数据该怎么产生数据。
数据接入:数据怎么从这么多源头搬运到数据中心进行统一处理。用什么方法搬运,搭建个管道让它一直进来,还是隔段时间搬运一次,这都是要考虑的。
数据存储:大量数据如何存,才能不会丢,而且读取快。
数据仓库:数据怎么进行有效的管理就是数据仓库该考虑的事情了。
数据计算:大量的数据要进行加工,才能产生价值,那么加工工具的效率就影响着你的效率。
数据应用:数据能用来做什么。