① 污水处理中影响氨氮浓度的原因是什么
污水处理中影响氨氮浓度的原因有:供养环境改变、自身因素、工艺不完善。
② 影响氨氮测定的因素有哪些
苏爱梅等[13]实验发现,当水样呈酸性时,氨氮测定值为 0236mg/L,呈碱性时测定值为 1035 mg/L,呈中性时测定值为 0920 mg/L,酸碱度对氨 氮测定有影响.采用纳氏试剂测定氨氮时,加入 不同量的 NaOH 溶液对纳氏试剂反应影响较大, 经过多次实验,肖福东[34]认为当加入 05ml NaOH 中和 10ml 硼酸最合适,此时 pH 值约为 1249.骆 冠琦等[3],萧涌瀚[5]和陈国强等[33]都认为当溶液 pH<11 时,不能使溶液中的 NH4+全部转化为 NH3,使测定结果偏低;当 pH>11 时,有 99%以上 的 NH4+转化为 NH3,此时 pH 值对测定电极电位 没有影响. 33 浊度 水样的浊度往往会对纳氏试剂比色测定结果 产生影响,俞是冉[35]建议做补偿校正:在 50ml 比 色管中,水样定容后加 10ml 酒石酸钾钠溶液,混匀.加 15ml 15%氢氧化钾溶液,测量吸光度(此 为校正吸光度).然后从水样经纳氏试剂比色测 得吸光度中减去校正吸光度. 34 锰 姜恩明等[36]发现饮用水中锰浓度高时,氨氮 有羡激偏高的趋势.实验中虽加入掩蔽剂,却未能消 除锰对氨氮检出的影响,排除蒸馏水等的影响,可 以推断锰对氨氮的影响是直接作用的结果,但其 作用机制和消除方法有待探讨. 丁建森等[37]认为,锰的影响机理是棕黄色或 棕色沉淀物 MnO(OH)2,与氨氮显色后的色泽一 致是主要影响因素.并实验证明用 50%酒石酸 钾钠 10ml+02%Na2-EDTA 10ml 代替纯酒石酸 钾钠能隐蔽 Mn2+干扰. 35 泡沫 在测定造纸,印染及含活性酶的工业废水时, 常会出现大量泡沫,使蒸馏无法进行而导致测试 失败.苏爱梅等[15]经试验发现,加入消泡剂 硅油Ⅰ可有效抑制蒸馏时泡沫的产生,使蒸馏顺 利完成.硅油Ⅰ性质稳定,不随水蒸汽逸出,对测 定无干扰,取空白和同一水样,按常法作加消泡剂 与不加消泡剂的对比试验,对实验结果进行 t 检验,均无显著性差异. 36 交叉污染 影响氨氮测定结果,除各种直接因素外还有 间接因素如交叉污染等.许华瑞等[22]建议要避 开测试项目之间的互相干扰,保持室内环境,玻璃 器皿不被氨玷污.李欣等[32]提出氨氮测试过程 必须注意交叉污染问题,如硝酸盐氮,氨氮不能同 时同室进行,因为前者测试中必须使用氨水,而氨 水的挥发性很强,纳氏试剂吸收空气中的氨而导 致测试结果偏高. 37 其它 何平[38]经试验分析证明,滤料中含有可溶性 氨氮,尤以定量滤纸为甚.须采用絮凝沉淀过滤 预处理时,最好选用含可溶性氨氮低的定性滤纸 和超细玻纤兄巧滤膜过滤,滤前应用纯水 100 ml 充分 洗涤以除去可溶性氨氮,可以除去由于滤料中可 溶性氨引起的测量误差,提高方法的准确度,灵敏 度. 4 结语 氨氮的测定方法种类较多,各有特点.纳氏 试剂比色法是氨的经典测定方法,但是易受水中 悬浮物和有色离子的干扰,需要进行预处理,使用 的试剂毒性较大;水杨酸-次氯酸钠比色法具有灵 敏,稳定的优点,但是同样具有比色法的弊端;蒸馏-滴定法适用于测定高浓度氨氮,但费电,费水, 费时;电极法通常不需要羡派键对水样进行预处理,其测 量范围宽,快速,灵敏,电极的使用寿命和稳定性 继续增强是电极法发展推广的重要条件;酶法具 有简便,快速,灵敏,准确和干扰少的优点,其对操 作人员技术水平要求很高,且实验材料为生物制 剂,不便于贮存使用,价格高. 现代化科学仪器的发展方向是活体(in-live), 原位(in-situ),实时(in-time),在线(on-line),要求 仪器小型化,人性化,易操作,易维护.结合我国 自动监测仪器的种类和发展现状,笔者认为电极 法不失为首选方法,但需进一步解决电极的寿命, 稳定性,可靠性等问题.
③ 氨氮高是什么引起的
您好,很高兴为您解答:
有机物导致的氨氮超标
超标原因:我运营过CN比小于3的高氨氮污水,因脱氮工艺要求CN比在4~6,所以需要投加碳源来提高反硝化的完全性。当时投加的碳源是甲醇,因为某些原因甲醇储罐出口阀门脱落,大量甲醇进入A池,导致曝气池泡沫很多,出水COD,氨氮飙升,系统崩溃。
原因分析:大量碳源进入A池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养菌,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制,氨氮升高。
解决办法:
1、立即停止进水进行闷爆、内外回流连续开启
2、停止压泥保证污泥浓度
3、如果有机物已经引起非丝状菌膨胀可以投加PAC来增加污泥絮性、投加消泡剂来消除冲击泡沫
内回流导致的氨氮超标
超标原因:目前遇到的内回流导致的氨氮超标有两方面原因:内回流泵有电气故障(现场跳停扔有运行信号)、机械故障(叶轮脱落)和人为原因(内回流泵未试正反转,现场为反转状态)。
原因分析:内回流导致的氨氮超标也可以归到有机物冲击中,因为没有硝化液的回流,导致A池中只有少量外回流携带的硝态氮,总体成厌氧环境,碳源灶冲只会水解酸化而不会完全代谢成二氧化碳逸出。所以大量有机物进入曝气池,导致了氨氮的升高。
解决办法:
内回流的问题很好发现,可以通过数据及趋势来判断是否是内回流导致的问题:初期O池出口硝态氮升高,A池硝态氮降低直至0,PH降低等,所以解决办法分3种情况:
1、及时发现问题,检修内回流泵就可以了
2、内回流已经导致氨氮升高,检修内回流泵,停止或者减少进水进行闷爆
3、硝化系统已经崩溃,停止进水闷爆,如果有条件、情况比较紧迫可以投加相似脱氮系统的生化污泥,加快系统恢复。
PH过低导致的氨氮超标
超标原因:目前遇到的PH过低导致的氨氮超标有三种情况:
1,内回流太大或者内回流处曝气开太大,导致携带大量的氧进入A池,破坏缺氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响了反硝化的完整性。
因为反硝化可以补偿硝化反应代谢掉碱度的一半,所以因为缺氧环境的破坏导致碱度产生减少,PH降低,低于硝化细菌适宜的PH之后 硝化反应受抑制,氨氮升高。这种情况可能有隐携歼些同行会遇到,但是从来没从这方面找原因。
2,进水CN比不足,原因也是反硝化不完整,产生的碱度少,导致的PH下降。
3,进水碱度降低导致的PH连续下降。
原因分析:隐昌PH降低导致的氨氮超标,实际中发生的概率比较低,因为PH的连续下降是一个过程,一般运营人员在没找到问题的时候就开始加碱去调节PH了
解决办法:
1,PH过低这种问题其实很简单,就是发现PH连续下降就要开始投加碱来维持PH,然后再通过分析去查找原因。
2,如果PH过低已经导致了系统的崩溃,目前接触过PH在5.8~6的时候,硝化系统还没有崩溃的情况,但是及时将PH补充上来,首先要把系统的PH补充上来,然后闷爆或者投加同类型的污泥。
那么最后
不同情况、原因大不同,各种污水处理当中会出现有不可控的变数,选择合适自己的处理方法也很重要哦,
④ 氨氮在线监测仪不出数据,是什么原因
机器问题或者设置问题都有可能,也有可能你们的水质中氨氮很低
⑤ 污水氨氮的超标原因有哪些
可为污水氨氮超标发生该类异常现象的污水处理厂提供参考。
1、出水氨氮异常时系统工艺数据的变化
该厂在运行稳定的情况下,出水氨氮往往能保持较低的水平,但硝化菌一旦受损,出水氨氮浓度短期内将迅速上升。出水数据监测往往受监测频次、监测速度等影响,数据结果反馈滞后。借助硝化效果短期内急剧变化的特点,分析各项表征硝化影响因素的工艺数据,以此判断系统的健康度,进而及时采取相关补救措施。
1.1 氧浓度变化判断耗氧速率快慢
在忽略细菌自身同化作用的条件下,硝化过程分两步进行:氨氮在亚硝化菌的作用下被氧化成亚硝酸盐氮,亚硝酸盐氮在硝化菌的作用下被氧化成硝酸盐氮。根据硝化反应公式每去除1g NH4+-N需消耗4.57g O2。利用上述结论,王建龙等人通过测量OUR表征硝化活性来了解反应器中的硝化状态。在曝气量固定,进水负荷变化不大的情况下,硝化是否完全直接影响生化池内溶解氧浓度的高低,因此发现出水氨氮异常时,操作人员需充分利用中控系统好氧池实时DO曲线的变化规律,根据氧消耗情况来判断硝化效果,短期内DO曲线呈明显上升趋势的需积极采取措施,防止系统的进一步恶化。
1.2 出水pH变化碱度消耗快慢
生物在硝化反应进行中伴随大量H+,消除水中的碱度。每1g氨被氧化需消耗7.14g碱度(以CaCO3计)。反之,随着硝化效果的减弱,碱度的孙烂消耗会有所下降。因此可以通过对出水在线pH的变化情况判断氧化沟的硝化效果。在线pH计,数据准确可靠,实时反馈,在实际运行中尤为有效。
2、常见原因
2.1 客观因素影响
上海属亚热带季风气候,每年梅雨季节和汛期雨水尤为充沛。收集范围越广,短时间内污水处理厂进水水量变化系数越大,水量过度负荷,缩短了硝化停留时间。此外,温度也对硝化的影响明显,在低温条件下硝化细菌的繁殖速度降低,体内酶活力受到抑制,代谢速度较慢。一般低于15℃硝化速率降低,12~14℃下活性污泥中硝酸菌活性受到更严重的抑制。每年12月至次年2月,上海气温最低。该厂氧化沟水温最兆凯段低仅12℃,因此冬季容易造成氨氮超标现象。
2.2 进水浓度过高
该厂进水包括精细化工废水,常受高浓度的废水及进水CODcr、氨氮、有机氮族誉等高浓度的冲击。CODcr对工艺过程中硝化段的影响主要体现在异养菌与硝化菌对氧的竞争方面。CODcr高时利于异氧菌生长,异养菌占优势,硝化菌少从而导致硝化效果不好。有机氮在经过水解酸化后可转化成氨氮,对硝化的影响等同于氨氮。氨氮负荷过高对活性污泥系统有巨大的冲击作用。此外,过高的氨氮会导致游离氨浓度的增加,游离氨对亚硝酸转化为硝酸的抑制性影响是很明显的,因为游离氨的升高导致亚硝酸氮的积累。
2.3 其它因素
除此之外,还有很多因素影响着硝化作用。例如:pH值过高会影响微生物的正常生长,增加水中游离氨的浓度抑制硝化菌。硝化菌还对重金属、酚、氰化物等有毒物质特别敏感。因此,可对水样进行硝化菌毒性试验来判断废水是否对硝化菌有抑制作用。
3、发现氨氮异常情况时的控制措施:
若主体生化处理单元,若出现 NH4-N有上升态势,针对不同的原因,可选择如下应急措施防止水质的进一步恶化。
3.1 减小进水氨氮负荷
减少进水氨氮负荷,一是降低进水氨氮浓度,二是减少进水水量。由于该厂接纳部分化工废水,容易受氨氮(或有机氮)的冲击,因此在线仪显示有高浓度氨氮进入时需及时启用应急调节池,同时加大对排污企业的抽样监测力度,从源头控制进水氨氮浓度。减少进水水量是促进硝化菌恢复的强有效手段,但实际运行中,受调节池停留时间、外部管网外溢风险等制约,仅可实施几小时。平日需积累各泵站输送规律,合理调度争取减负时间。
3.2 维持硝化必须的碱度量
氨氮的氧化过程消耗碱度,pH值下降,从而影响硝化的正常进行,因此溶液中必须有充足的碱度才能保证硝化的顺利进行。实验研究表明,当ALK/N<8.85时,碱度将影响硝化过程的进行,碱度增加,硝化速率增大。但当ALK/N≥9.19(碱度过量30)以后,继续增加碱度,硝化速率增加甚微,甚至会有所下降。过高的碱度会产生较高的pH值,反而会抑制硝化的进行。故控制ALK/N在8-10较为合理。在实际工程中,可向氧化沟内投加溶解完成的碳酸钠以提高碱度。
3.3 合理控制氧浓度
氨氮氧化需要消耗溶解氧,但氧浓度并非越高越好。由氧气在水中的传质方程可知,液相主体中的DO浓度越高,氧的传质效率越低。综合考虑氧在水中的传质效率和微生物的硝化活性,调控好氧段的DO在2.5mg/L左右可以在不浪费能量的情况下最大限度地提高对氨氮的去除效率。
3.4 投加消化促进剂
硝化促进剂是利用微生物营养与生理学方法进行合理配方,根据微生物营养生理及污水处理的共代谢原理,促进硝化细菌发生作用,提高污水处理的氨氮去除效率。笔者尝试在硝化效果减弱,氨氮逐步上升阶段投加,效果显著。但系统丧失硝化能力时投加,效果不明显,且该类产品往往价格昂贵,对处理大水量的系统实用性不强。
3.5 其它工艺上的微调
①减少氧化沟排泥量。一是因为硝化菌世代周期长,较长的SRT有利于硝化菌的生长;二是硝化效果降低时,大量的硝化菌被流失,排泥会加速硝化菌的流失。
②增加氧化沟内、外回流。前者是为系统提供更长的好氧时间,有利于硝化菌的生长。后者一方面可维持生化单元相对较高的污泥浓度,提高系统的抗冲击能力;另一方面可降低进入氧化沟的氨氮浓度,进而减少高浓度氨氮或游离氨对硝化菌的抑制作用。
③加大取样化验分析频次, 检验所采取的应急措施对出水水质的改善效果, 否则应更换其他方法或多种方法联用,尽量缩短处理系统的恢复时间。
⑥ 污水氨氮超标原因是什么
楼主您段大好,我来为您解答:
1、氨氮超标的原因有非常多的情况,主要有系统中没有硝化菌的存在,停留时间不足,碱度不足,曝气量不足等。
2、硝化菌是氨氮降解的关键菌群,因此他们是否健康生长决定了你系统中的氨氮降解。
3、其次是硝化菌存在,停留时间不足,也就是溶解负荷不足造成的。
4、停留时间够,但是曝气量不足,也是不能降解氨氮,因为1个单位的氨氮需要4.5个单位的氧气,慧燃拦好氧量非常大。
5、硝化菌存在,停留时间也够,曝气量也充足,那就是碱度不足,碱度不足硝化反应没法启动,氨氮自然不能降解。
总氮专家新尔特生物为您提供,希前胡望对您有帮助,谢谢。
⑦ 氨氮超标是什么原因导致如何快速去除
污水氨氮超标一般就是里面含有的一些营养的成分,或者杂质的成分超标了,经过发酵发热而生成的轮判这种氨氮器超闭缓超标的唯一的办法就是减少排放,或者用清水冲淡轿桐模的
⑧ 在线监测氨氮负飘什么故障
因电气故障、机械雀岩故障或人为原因导致。
肯定是你测试氨氮用的稀释水含氨氮过高,导致测试吸光度比空白吸光度还小。所以你换下稀释水再测测看。
1、测量值偏高---校准液不准确或失效。气透膜有气泡。气透膜链滚脏污。电极故障。气透膜老化或损坏。
2、测量值偏低---校准液不准确或失效。缺试剂。电极响应缓慢。气透膜脏污。电极故障。气透膜老化。
3、校准无效---校准液不准确或失效。缺校准液。电极响应缓慢。气透膜脏污。电极故障。气透膜老化。
4、流通池温度异常---温度传感器出现故障。环顷唤御境温度超出仪器要求的环境温度范围。
⑨ COD、氨氮处理效果差都是什么原因(TP处理效果差的原因)
一、COD处理效果差
影响COD处理效果的因素主要有:
1、营养物
一般污水中的氮磷等营养元素都能够满足微生物需要,且过剩很多。但工业废水所占比例较大时,应注意核算碳、氮、磷的比例是否满足100:5:1。如果污水中缺氮,通常可投加铵盐。如果污水中缺磷,通常可投加磷酸或磷酸盐。
2、pH
污水的pH值是呈中性,一般为6.5~7.5。pH值的微小降低可能是由于污水输送管道中的厌氧发酵。雨季时较大的pH降低往往是城市酸雨造成的,这种情况在合流制系统中尤为突出。pH的突然大幅度变化,不论是升高还是降低,通常都是由工业废水的大量排入造成的。调节污水pH值,通常是投加氢氧化钠或硫酸,但这将大大增加污水处理成本。
3、油脂
当污水中油类物质含量较高时,会使曝气设备的曝气效率降低,如不增加曝气量就会使处理效率降低,但增加曝气量势必增加污水处理成本。另外,污水中较高的油脂含量还会降低活性污泥的沉降性能,严重时会成为污泥膨胀的原因,导致出水SS超标。对油类物质含量较高的进水,需要在预处理段增加除油装置。
4、温度
温度对活性污泥工艺的影响是很广泛的。首先,温度会影响活性污泥中微生物的活性,在冬季温度较低时,如不采取调控措施,处理效果会下降。其次,温度会影响二沉池的分离性能,例如温度变化会使沉淀池产生异重流,导致短流;温度降低会使活性污泥由于粘度增大而降低沉降性能;温度变化会影响曝气系统的效率,夏季温度升高时,会由于溶解氧饱和浓度的降低,而使充氧困难,导致曝气效率的下降,并会使空气密度降低,若要保证供气量不变,则必须增大供气量。
二、氨氮处理效果差
污水中氨氮的去除主要是在传统活性污泥法工艺基础上采用硝化工艺,即采首猜用延时曝气,降低系统负荷。
影响氨氮处理效果的原因涉及许多方面,主要有:
1、污泥负荷与污泥龄
生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。
2、回流比
生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。
3、水力停留时间
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
4、BOD5/TKN
TKN系指水中有机氮与氨氮之和,入流污水中BOD5/TKN是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越扮橡小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多污水处理厂的运行实践发现,BOD5/TKN值最佳范围为2~3左右。
5、硝化速率
生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量。硝化速率的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素,典型值为0.02gNH3-N/gMLVSS×d。
6、溶解氧
硝化细菌为专性好氧菌,无氧时厅芹旁即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。
7、温度
硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。
8、pH
硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。因此,应尽量控制生物硝化系统的混合液pH大于7.0。
三、TP处理效果差
生物除磷中通过聚磷菌在厌氧状态下释放磷,在好氧状态下过量地摄取磷。经过排放富磷剩余污泥而除磷!
影响总磷处理效果的原因涉及许多方面,主要有:
1、温度
温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
2、pH值
当PH在6.5—8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当PH值低于6.5时,吸磷率急剧下降。当ph值突然降低,无论在好氧区还是厌氧区,磷的浓度都急剧上升,PH降低的幅度越大释放量越大,说明ph降低引起的磷释放不是聚磷菌本身对ph变化的生理生化反应,而是一种纯化学的“酸溶”效应,而是ph下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明ph下降引起的释放量是破坏性的,无效的。ph升高时则出现磷的轻微吸收。
3、溶解氧
每毫克分子氧可消耗易生物降解的COD1.14mg,致使聚磷生物的生长受到抑制,难以达到预计的除磷效果。厌氧区要保持较低的溶解氧值以更利于厌氧菌的发酵产酸,进而使聚磷菌更好的释磷,另外,较少的溶解氧更有利予减少易降解有机质的消耗,进而使聚磷菌合成更多的PHB。
而在好氧区需要较多的溶解氧,以更利于聚磷菌分解储存的PHB类物质获得能量来吸收污水中的溶解性磷酸盐合成细胞聚磷。厌氧区的DO控制在0.3mg/l以下,好氧区DO控制在2mg/l以上,方可确保厌氧释磷好氧吸磷的顺利进行。
4、厌氧池硝态氮
厌氧区硝态氮存在消耗有机基质而抑制PAO对磷的释放,从而影响在好氧条件下聚磷菌对磷的吸收。另一方面,硝态氮的存在会被气单胞菌属利用作为电子受体进行反硝化,从而影响其以发酵中间产物作为电子受体进行发酵产酸,从而抑制PAO的释磷和摄磷能力及PHB的合成能力。每毫克硝酸盐氮可消耗易生物降解的COD2.86mg,致使厌氧释磷受到抑制,一般控制在1.5mg/l以下。
5、泥龄
由于生物除磷系统主要通过排出剩余污泥实现除磷,因此剩余污泥量的多少决定系统的除磷效果,而泥龄长短对剩余污泥的排放量和污泥对磷的摄取作用有直接的影响。污泥龄越小,除磷效果越佳。这是因为降低污泥龄,可增加剩余污泥的排放量及系统中的除磷量,从而削减二沉池出水中磷的含量。但对于同时除磷脱氮的生物处理工艺而言,为了满足硝化和反硝化细菌的生长要求,污泥龄往往控制得较大,这是除磷效果难以令人满意的原因。一般以除磷为目的的生物处理系统的泥龄控制在3.5~7d。
6、COD/TP
污水生物除磷工艺中,厌氧段有机基质的种类、含量及微生物所需营养物质与污水中含磷的比值是影响除磷效果的重要因素。不同的有机物为基质时,磷的厌氧释放和好氧摄取效果是不同的。分子量较小的易降解有机物(如挥发性脂肪酸类等)容易被聚磷菌利用,将其体内储存的多聚磷酸盐分解释放出磷,诱导磷释放的能力较强,而高分子难降解有机物诱导聚磷菌释磷能力就较差。厌氧阶段磷的释放越充分,好氧阶段磷的摄取量就越大。另外,聚磷菌在厌氧阶段释磷所产生的能量,主要用于其吸收低分子有机基质以作为厌氧条件下生存的基础。因此,进水中是否含有足够的有机质,是关系到聚磷菌能否在厌氧条件下顺利生存的重要因素。一般认为,进水中COD/TP要大于15,才能保证聚磷菌有足够的基质,从而获得理想的除磷效果。
7、RBCOD(易降解COD)
研究表明,当以乙酸、丙酸和甲酸等易降解碳源作为释磷基质时,磷的释放速率较大,其释放速率与基质的浓度无关,仅与活性污泥的浓度和微生物的组成有关,该类基质导致的磷的释放可用零级反应方程式表示。而其他类有机物要被聚磷菌利用,必须转化成此类小分子的易降解碳源,聚磷菌才能利用其代谢。
8、糖原
糖原是由多个葡萄糖组成的带分枝的大分子多糖,是胞内糖的贮存形式。如上图所示聚磷菌中糖原在好氧环境下形成,储存能量在厌氧环境下代谢形成为PHAs的合成的原料NADH并为聚磷菌代谢提供能量。所以在延迟曝气或者过氧化的情况下,除磷效果会很差,因为过量曝气会在好氧环境下消耗一部分聚磷菌体内的糖原,导致厌氧时形成PHAs的原料NADH的不足。
9、HRT
对于运行良好的城市污水生物脱氮除磷系统来说,一般释磷和吸磷分别需要1.5~2.5小时和2.0~3.0小时。总体来看,似乎释磷过程更为重要一些,因此,我们对污水在厌氧段的停留时间更为关注,厌氧段的HRT太短,将不能保证磷的有效释放,而且污泥中的兼性酸化菌不能充分地将污水中的大分子有机物分解为可供聚磷菌摄取的低级脂肪酸,也会影响磷的释放;HRT太长,也没有必要,既增加基建投资和运行费用,还可能产生一些副作用。总之,释磷和吸磷是相互关联的两个过程,聚磷菌只有经过充分的厌氧释磷才能在好氧段更好地吸磷,也只有吸磷良好的聚磷菌才会在厌氧段超量地释磷,调控得当会形成一个良性循环。我厂在实际运行中摸索得到的数据是:厌氧段HRT为1小时15分~1小时45分,好氧段HRT为2小时~3小时10分较为合适。
10、回流比(R)
A/O工艺保证除磷效果的极为重要的一点,就是使系统污泥在曝气池中“携带”足够的溶解氧进入二沉池,其目的就是为了防止污泥在二沉池中因厌氧而释放磷,但如果不能快速排泥,二沉池内泥层太厚,再高的DO也无法保证污泥不厌氧释磷,因此,A/O系统的回流比不宜太低,应保持足够的回流比,尽快将二沉池内的污泥排出。但过高的回流比会增加回流系统和曝气系统的能源消耗,且会缩短污泥在曝气池内的实际停留时间,影响BOD5和P的去除效果。如何在保证快速排泥的前提下,尽量降低回流比,需在实际运行中反复摸索。一般认为,R在50~70%的范围内即可。