『壹』 大数据是什么多大的数据叫大数据
你好
多大的数据才算“大数据”
什么是大数据有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。
若能给你带来帮助,请帮忙点击采纳,谢谢!!!
『贰』 大数据是什么,是怎么带动经济发展的
大数据的概念
概念:难以用常规的数据库工具获取、存储、管理、分析的数据集合。
特征:
1、数据量大:起始单位是PB级的。
1KB=1024B
1MB=1024KB
1GB=1024MB
1TB=1024GB
1PB=1024TB
1EB=1024PB
1ZB=1024EB
2、类型多:
结构化、板结构化、非结构化:网诺日志、音频、视频、图片、地理位置等信息混杂。
3、价值密度低:
获取数据的价值就像是淘金一般。
4、速度快时效高:
数据呈指数倍增长,时效性要求高,比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能的完成实时推荐。
5、永远在线:
大数据时代的数据是永远在线的,随时应用计算,这也是区别于传统的数据的最大特征。
大数据从哪来
1、搜索引擎服务
网络数据量1000PB,每天响应138个国家数十亿次请求,每日新增10TB
2、电子商务
3、社交网络
QQ:8.5亿用户,用4400台服务器存储用户产生的信息,压缩后的数据100PB,每天新增200~300TB
4、音视频在线服务
5、个人数据业务
6、地理信息数据
7、传统企业
8、公共机构
智慧城市:摄像头拍摄的图片,1080P高清网络摄像机一月产生1.8TB数据,大点的城市50万个摄像头,一个月3PB的数据量。
医疗、中国的气象系统。
大数据的存储与计算模式
存储:
面临的问题:数据量大、类型复杂(结构化、非结构化、半结构化)
关键技术:
1、分布式文件系统(高效元数据管理技术、系统弹性扩展技术、存储层级内的优化、针对应用和负载的存储优化技术、针对存储器件的优化技术)
2、分布式数据库
事务性数据库技术:NoSQL:(支持非关系数据库、具有多个节点分割和复制数据的能力、用最终一致性机制解决并发读操作与控制问题、充分利用分布式索引及内存提高性能)代表有:BigTable、HBase、MongoDB、Dynamo。
分析型的数据库技术:Hive 、Impala
3、大数据索引和查询技术
4、实时流式大数据存储与处理技术
计算:
面临的问题:数据结构特征、并行计算(以分布式文件为基础的Hadoop以分布式内存缓存为基础的Spark)、数据获取(批处理流处理)、数据处理类型(传统查询数据挖掘分析计算)、实时响应性能、迭代计算、数据关联性(先map一下再rece一下)。
关键技术:
1、大数据查询分析计算模式与技术:HBase、Hive、Cassandra、Impala
2、批处理计算:Hadoop MapRece、Spark
3、流式计算:Storm、Spark Steaming
4、图计算:Giraph、GraphX
5、内存计算:Spark、Hana(SAP公司全内存式分布式数据库系统)、Dremel
应用领域
1、智慧医疗(临床数据、公共卫生数据、移动医疗健康数据)(共享疾病案例,基因分类参考)
2、智慧农业(主要指依据商业需求进行农产品生产,降低菜残伤农概率)
3、金融行业:
精准的营销:根据可与习惯进行推销
风险管控:根据用户的交易流水实施反欺诈
决策支持:抵押贷款这一块,实施产业信贷的风险控制。
效率提升:加快内部数据处理。
产品设计:根据客户的投资行为设计满足客户需求的金融产品。
4、零售行业(对零售商来说:精准营销(降低营销成本,扩大营销额);对厂商:降低产品过剩)
5、电子商务行业
6、电子政务
希望对您有所帮助!~
『叁』 多大的数据,才能称为大数据呢
5. Veracity(真实性)
大数据就一定真实么?并没有。为什么这么说呢,想象一下当下泛滥的作弊流量吧,你还敢确保你的用户数据并没有虚假的吗?所以,大数据也是可以造假的,我们一定要有一双智慧的眼睛却辨别大数据的好坏。
『肆』 大数据技术及应用
大数据技术及应用
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。哈佛大学社会学教授加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
二、什么是大数据
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据。它的数据规模和转输速度要求很高,或者其结构不适合原本的数据库系统。为了获取大数据中的价值,我们必须选择另一种方式来处理它。数据中隐藏着有价值的模式和信息,在以往需要相当的时间和成本才能提取这些信息。如沃尔玛或谷歌这类领先企业都要付高昂的代价才能从大数据中挖掘信息。而当今的各种资源,如硬件、云架构和开源软件使得大数据的处理更为方便和廉价。即使是在车库中创业的公司也可以用较低的价格租用云服务时间了。对于企业组织来讲,大数据的价值体现在两个方面:分析使用和二次开发。对大数据进行分析能揭示隐藏其中的信息。例如零售业中对门店销售、地理和社会信息的分析能提升对客户的理解。对大数据的二次开发则是那些成功的网络公司的长项。例如Facebook通过结合大量用户信息,定制出高度个性化的用户体验,并创造出一种新的广告模式。这种通过大数据创造出新产品和服务的商业行为并非巧合,谷歌、雅虎、亚马逊和Facebook它们都是大数据时代的创新者。
(一)大数据的4V特征
大量化(Volume):企业面临着数据量的大规模增长。例如,IDC最近的报告预测称,到2020年,全球数据量将扩大50倍。目前,大数据的规模尚是一个不断变化的指标,单一数据集的规模范围从几十TB到数PB不等。简而言之,存储1PB数据将需要两万台配备50GB硬盘的个人电脑。此外,各种意想不到的来源都能产生数据。
多样化(Variety):一个普遍观点认为,人们使用互联网搜索是形成数据多样性的主要原因,这一看法部分正确。然而,数据多样性的增加主要是由于新型多结构数据,以及包括网络日志、社交媒体、互联网搜索、手机通话记录及传感器网络等数据类型造成。其中,部分传感器安装在火车、汽车和飞机上,每个传感器都增加了数据的多样性。
快速化(Velocity):高速描述的是数据被创建和移动的速度。在高速网络时代,通过基于实现软件性能优化的高速电脑处理器和服务器,创建实时数据流已成为流行趋势。企业不仅需要了解如何快速创建数据,还必须知道如何快速处理、分析并返回给用户,以满足他们的实时需求。根据IMS Research关于数据创建速度的调查,据预测,到2020年全球将拥有220亿部互联网连接设备。
价值(Value):大量的不相关信息,浪里淘沙却又弥足珍贵。对未来趋势与模式的可预测分析,深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等)
三、大数据时代对生活、工作的影响
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
大数据在个人隐私的方面,大量数据经常含有一些详细的潜在的能够展示有关我们的信息,逐渐引起了我们对个人隐私的担忧。一些处理大数据公司需要认真的对待这个问题。例如美国天睿资讯给人留下比较深刻印象的是他的一个科学家提出,我们不应该简单地服从法律方面的隐私保护问题,这些远远不够的,公司都应该遵从谷歌不作恶的原则,甚至更应该做出更积极的努力。
四、大数据时代的发展方向、趋势
根据ESM国际电子商情针对2013年大数据应用现状和趋势的调查显示:被调查者最关注的大数据技术中,排在前五位的分别是大数据分析(12.91%)、云数据库(11.82%)、Hadoop(11.73%)、内存数据库(11.64%)以及数据安全(9.21%)。Hadoop已不再是人们心目中仅有的大数据技术,而大数据分析成为最被关注的技术。从中可以看出,人们对大数据的了解已经逐渐深入,关注的技术点也越来越多。既然大数据分析是最被关注的技术趋势,那么大数据分析中的哪项功能是最重要的呢?从下图可以看出,排在前三位的功能分别是实时分析(21.32%)、丰富的挖掘模型(17.97%)和可视化界面(15.91%)。2012年也曾做过类似的调查,当时选择丰富的挖掘模型(27.22%)比实时分析(19.88%)多7.34%。短短一年时间内,企业对实时分析的需求激增,成就了很多以实时分析为创新技术的大数据厂商。从调查结果可以看出:企业在未来一两年中有迫切部署大数据的需求,并且已经从一开始的基础设施建设,逐渐发展为对大数据分析和整体大数据解决方案的需求。与此同时,大数据还面临人才的缺乏的挑战,需要企业和高校联合起来,培养数据领域的复合型人才,帮助企业打赢这场“数据战”。
五、大数据的应用
(一)行业拓展者,打造大数据行业基石
IBM:IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台);业务事件处理;IBM Mashup Center的计量,监测,和商业化服务(MMMS)。 IBM的大数据产品组合中的最新系列产品的InfoSphere bigInsights,基于Apache Hadoop。
该产品组合包括:打包的Apache Hadoop的软件和服务,代号是bigInsights核心,用于开始大数据分析。软件被称为bigsheet,软件目的是帮助从大量数据中轻松、简单、直观的提取、批注相关信息为金融,风险管理,媒体和娱乐等行业量身定做的行业解决方案。
微软:2011年1月与惠普(具体而言是HP数据库综合应用部门) 合作目标是开发了一系列能够提升生产力和提高决策速度的设备。
EMC:EMC 斩获了纽交所和Nasdaq;大数据解决方案已包括40多个产品。
Oracle:Oracle大数据机与Oracle Exalogic中间件云服务器、Oracle Exadata数据库云服务器以及Oracle Exalytics商务智能云服务器一起组成了甲骨文最广泛、高度集成化系统产品组合。
(二)大数据促进了政府职能变革
重视应用大数据技术,盘活各地云计算中心资产:把原来大规模投资产业园、物联网产业园从政绩工程,改造成智慧工程;在安防领域,应用大数据技术,提高应急处置能力和安全防范能力;在民生领域,应用大数据技术,提升服务能力和运作效率,以及个性化的服务,比如医疗、卫生、教育等部门;解决在金融,电信领域等中数据分析的问题:一直得到得极大的重视,但受困于存储能力和计算能力的限制,只局限在交易数型数据的统计分析。一方面大数据的应用促进了政府职能变革,另一方面政府投入将形成示范效应,大大推动大数据的发展。
(三)打造“智慧城市”
美国奥巴马政府在白宫网站发布《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式” ;中国工程院院士邬贺铨说道,“智慧城市是使用智能计算技术使得城市的关键基础设施的组成和服务更智能、互联和有效,随着智慧城市的建设,社会将步入“大数据”时代。”
(四)未来,改变一切
未来,企业会依靠洞悉数据中的信息更加了解自己,也更加了解客户。
数据的再利用:由于在信息价值链中的特殊位置,有些公司可能会收集到大量的数据,但他们并不急需使用也不擅长再次利用这些数据。例如,移动电话运营商手机用户的位置信息来传输电话信号,这对以他们来说,数据只有狭窄的技术用途。但当它被一些发布个性化位置广告服务和促销活动的公司再次利用时,则变得更有价值。
六、机遇和挑战
大数据赋予了我们洞察未来的能力,但同时诸多领域的问题亟待解决,最重要的是每个人的信息都被互联网所记录和保留了下来,并且进行加工和利用,为人所用,而这正是我们所担忧的信息安全隐患!更多的隐私、安全性问题:我们的隐私被二次利用了。多少密码和账号是因为“社交网络”流出去的?
眼下中国互联网热门的话题之一就是互联网实名制问题,我愿意相信这是个好事。毕竟我们如果明着亮出自己的身份,互联网才能对我们的隐私给予更好保护
『伍』 大数据的大量指的是至少要有多大数据量A100K字节B100字节C100M字节D100T字节8
大数据的大量指的是至少要有 100T 字节。
在计算机领域中,数据量的单位通常使用字节(Byte)来表示。常用的数据量单位有 K、M、G、T 等。其中,K 表示千,M 表示百万,G 表示十亿,T 表示万亿。因此,100K 字节表示 100 * 1000 = 10^5 个字节,100M 字节表示 100 * 1000 * 1000 = 10^8 个字节,100T 字节表示 100 * 1000 * 1000 * 1000 = 10^12 个字节。
可以看出,100T 字节是一个很大的数据量,至少要有这么大的数据量,才能称之为大数据。
希望这对你有帮助!
『陆』 大数据存储需要具备什么
大数据之大大是相对而言的概念。例如,对于像SAPHANA那样的内存数据库来说,2TB可能就已经是回大容量了;而对于像谷歌这样答的搜索引擎,EB的数据量才能称得上是大数据。大也是一个迅速变化的概念。HDS在2004年发布的USP存储虚拟化平台具备管理32PB大数据存储需要具备什么?
『柒』 一个200行数据的datatable大概占用多少内存
太少了,现在的内存都是用G来计算的,200行对它来说太少了!
你可以通过二进制序列化,把你那个datatable序列化到文件里面,你可以大概知道大小了!
BinaryFormatter bf = new BinaryFormatter();
MemoryStream ms = new MemoryStream();
DataTable dt = new DataTable();
bf.Serialize(ms, dt);
运行看了看,一个空的DataTable也就930个字节,在.NET 4.0里面!