导航:首页 > 数据分析 > 如何进行数据处理

如何进行数据处理

发布时间:2023-02-28 05:57:37

⑴ 数据预处理的方法有哪些

数据预处理的方法有:数据清理、数据集成、数据规约和数据变换。

1、数据清洗

数据清洗是通过填补缺失值,平滑或删除离群点,纠正数据的不一致来达到清洗的目的。简单来说,就是把数据里面哪些缺胳膊腿的数据、有问题的数据给处理掉。总的来讲,数据清洗是一项繁重的任务,需要根据数据的准确性、完整性、一致性、时效性、可信性和解释性来考察数据,从而得到标准的、干净的、连续的数据。

(1)缺失值处理

实际获取信息和数据的过程中,会存在各类的原因导致数据丢失和空缺。针对这些缺失值,会基于变量的分布特性和变量的重要性采用不同的方法。若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除,这种方法被称为删除变量。

若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况用基本统计量填充(最大值、最小值、均值、中位数、众数)进行填充,这种方法被称为缺失值填充。对于缺失的数据,一般根据缺失率来决定“删”还是“补”。


(2)离群点处理

离群点(异常值)是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。我们常用的方法是删除离群点。

(3)不一致数据处理

实际数据生产过程中,由于一些人为因素或者其他原因,记录的数据可能存在不一致的情况,需要对这些不一致数据在分析前进行清理。例如,数据输入时的错误可通过和原始记录对比进行更正,知识工程工具也可以用来检测违反规则的数据。

2、数据集成

随着大数据的出现,我们的数据源越来越多,数据分析任务多半涉及将多个数据源数据进行合并。数据集成是指将多个数据源中的数据结合、进行一致存放的数据存储,这些源可能包括多个数据库或数据文件。在数据集成的过程中,会遇到一些问题,比如表述不一致,数据冗余等,针对不同的问题,下面简单介绍一下该如何处理。

(1)实体识别问题

在匹配来自多个不同信息源的现实世界实体时,如果两个不同数据库中的不同字段名指向同一实体,数据分析者或计算机需要把两个字段名改为一致,避免模式集成时产生的错误。

(2)冗余问题

冗余是在数据集成中常见的一个问题,如果一个属性能由另一个或另一组属性“导出”,则此属性可能是冗余的。

(3)数据值的冲突和处理

不同数据源,在统一合并时,需要保持规范化,如果遇到有重复的,要去重。

⑵ 数据处理的常用方法有

1、列表法:是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。
2、图示法:是用图象来表示物理规律的一种实验数据处理方法。一般来讲,一个物理规律可以用三种方式来表述:文字表述、解析函数关系表述、图象表示。
3、图解法:是在图示法的基础上,利用已经作好的图线,定量地求出待测量或某些参数或经验公式的方法。
4、逐差法:由于随机误差具有抵偿性,对于多次测量的结果,常用平均值来估计最佳值,以消除随机误差的影响。
5、最小二乘法:通过实验获得测量数据后,可确定假定函数关系中的各项系数,这一过程就是求取有关物理量之间关系的经验公式。从几何上看,就是要选择一条曲线,使之与所获得的实验数据更好地吻合。

⑶ 论文数据处理方法

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

论文数据处理方法1

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

论文数据处理方法2

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

⑷ 怎样进行数据分析

进行数据分析方式如下:

1、要求明确:准确

明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。

在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。

2、确定思路:全面、深入

分析思想是分析的灵魂,是细化分析工作的过程。分析思路清晰有逻辑,能有效避免反复分析问题。从分析目的出发,全面、深入地拆解分析维度,确定分析方法,最终形成完整的分析框架。

3、处理数据:高效

当我们进行数据分析时,我们可能会得到混乱的数据,这就要求我们清洁、整理、快速、准确地加工成适合数据分析的风格。

此时需要使用数据分析软件以工作流的形式提取数据模型的语义,通过易于操作的可视化工具将数据加工成具有语义一致性和完整性的数据模型。系统支持的数据预处理方法包括:采样、拆分、过滤和映射、列选择、空值处理、并行、合并行、元数据编辑、JOIN、行选择、重复值去除等。

4、数据分析:合适的数据

分析数据在分析过程中的地位是首要任务。从分析的目的出发,运用适当的分析方法或模型,使用分析工具分析处理过的数据,提取有价值的信息。

5、显示数据:直观

展示数据又称数据可视化,是以简单直观的方式传达数据中包含的信息,增强数据的可读性,让读者轻松看到数据表达的内容。

6、写报告:建议落地,逻辑清晰

撰写报告是指以文件的形式输出分析结果,其内容是通过全面科学的数据分析来显示操作,可以为决策者提供强有力的决策依据,从而降低操作风险,提高利润。

在撰写报告时,为了使报告更容易阅读和有价值,需要注意在报告中注明分析目标、口径和数据来源;报告应图文并茂,组织清晰,逻辑性强,单一推理;报告应反映有价值的结论和建议。

7、效果反馈:及时

所谓效果反馈,就是选择合适有代表性的指标,及时监控报告中提出的战略执行进度和执行效果。只有输入和输出才能知道自己的操作问题点和闪点,所以效果反馈是非常必要的。反馈时要特别注意两点,一是指标要合适,二是反馈要及时。

⑸ 如何进行大数据分析及处理

1.可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。

另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3. 预测性分析

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4. 语义引擎

非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。

语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

5.数据质量和数据管理。

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术

数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取: 关系数据库、NOSQL、SQL等。

基础架构: 云存储、分布式文件存储等。

数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。

处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。

一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。

统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

模型预测 :预测模型、机器学习、建模仿真。

结果呈现: 云计算、标签云、关系图等。

大数据的处理

1. 大数据处理之一:采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。

比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。

并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

2. 大数据处理之二:导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。

也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3. 大数据处理之三:统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4. 大数据处理之四:挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。

比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。

该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

阅读全文

与如何进行数据处理相关的资料

热点内容
登录韩国id后如何在app付费 浏览:811
bp神经网络预测matlab代码实现 浏览:194
linux基本分区 浏览:274
如何给电脑重要文件设置路径 浏览:387
中国发布要素市场化配置文件 浏览:984
狸窝全能视频转换器密码 浏览:341
哪里下载原始数据 浏览:2
javaclass关键字 浏览:651
零基础学网页UI设计PDF文件 浏览:303
1月6日买苹果送耳机 浏览:520
access代码生成器 浏览:915
柱状图如何更改表格左侧数据 浏览:223
嘉定区常用网络服务有哪些 浏览:271
两份word文件怎么压缩 浏览:471
股票池压缩文件 浏览:656
word2007如何画正方形 浏览:244
vivo最好用什么数据线 浏览:417
二维腿长是哪个数据 浏览:126
红头文件在哪里订书 浏览:175
iphone4s运行ios9 浏览:688

友情链接