⑴ 大数据查询分析技术有哪些
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。
Hive是为大数据批量处理而生的,它的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。
Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。成都加米谷大数据培训机构,小班教学,免费试听。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
关于大数据查询分析技术有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑵ 如果我们的研究主题为大数据,应检索哪些文献
1.[期刊论文]数据科学与大数据技术专业的教材建设探索
期刊:《新闻文化建设》 | 2021 年第 002 期
摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。
关键词:数据科学与大数据技术专业;课程设置;教材建设
链接:https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/0201289060336.html
---------------------------------------------------------------------------------------------------
2.[期刊论文]数据科学与大数据技术专业课程体系探索
期刊:《科教文汇》 | 2021 年第 002 期
摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.
关键词:数据科学;大数据技术;课程体系
链接:https://www.zhangqiaokeyan.com/academic-journal-cn_science-ecation-article-collects_thesis/0201284684572.html
---------------------------------------------------------------------------------------------------
3.[期刊论文]数据科学与大数据技术专业实验实践教学探析
期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期
摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.
关键词:数据科学;大数据;实践教学
链接:https://www.zhangqiaokeyan.com/academic-journal-cn_journal-changchun-university_thesis/0201288750604.html
⑶ 大数据的特点和作用是什么
大数据的出现给很多企业对于寻找未来的方向性带来很大的帮助,所以很多企业开始密切关注大数据,现在很多人都开始关注大数据了,大数据能够给大家带来帮助,但是大家知道不知道大数据的特点和作用是什么呢?一般来说,大数据的特点就是数据体量巨大、类型多样、处理速度快、价值密度低。
大数据的特点是什么呢?具体来说,大数据具有4个基本特征:
一是数据体量巨大。现如今,一般的首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,就目前而言,人类生产的所有印刷材料的数据量仅为200PB。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理都需要很快的速度,可从各种类型的数据中快速提取高价值的信息。
四是价值密度低。以视频为例,在很长时间的视频中,在不间断的监控过程中,可能有用的数据只有几秒。
大数据的作用
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、数字家庭、物联网、社交网络、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,能够使大数据为大家更好的服务。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策对大数据的分析越来越重视,对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;在医疗领域,可提高诊断准确性和药物有效性;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在公共事业方面,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
第四,大数据时代科学研究的方法手段将发生重大改变。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
以上就是对于大数据的特点和作用的解答了,一般来说大数据的处理分析正成为新一代信息技术融合应用的结点、大数据是信息产业持续高速增长的新引擎、大数据利用将成为提高核心竞争力的关键因素、大数据时代科学研究的方法手段将发生重大改变。希望这篇文章能够给大家带来帮助。
⑷ 如何使用大数据帮助搜索引擎优化
网站进行搜索引擎优化的方法是
1、程序优化。编程者在开发程序的时候,尽量不使用非常用算法,不要出现代码错误,不要使程序机构混乱不堪。少使用FRAME框架结构,少使用图片、FLASH表达内容。还有的就是,要在程序源代码里要有“关键字”“描述”功能。语言结构简化,好使用 CSS+DIV方式,而不是原先老旧的TABLE表格式。
2、网站做成静态或者伪静态的。由于搜索引擎对现实存在的网页内容,容易搜索到,而对于数据库里的东西,很难搜索到,所以好把页面做成静态的。当然,现在的网站很多是伪静态的,这个我在这里就不多说了。
3、关键字词的密度和出现的位置。你的整体内容内应该包含有你内容关键字词
⑸ 如何通过大数据分析做市场调研
大数据时代新的市场研究方法使“无干扰”真实还原消费过程成为可能,智能化的信息处理技术使低成本、大样本的定量调研成为现实,这将推动消费行为及消费心理研究达到一个新的高度,帮助快速消费品企业更为精准地捕捉商机。大数据时代的市场研究方法主要体现在以下四个方面。
1.基于互联网进行市场调研提高了效率,降低了成本
网络调研具有传统调研方法无可比拟的便捷性和经济性。快速消费品企业在其门户网站建立市场调研板块,再将新产品邮寄给消费者,消费者试用后只要在网站上点击即可轻松完成问卷填写,其便利性大大降低了市场调研的人力和物力投入,也使得消费者更乐于参与市场调研。同时,网络调研的互动性使得企业在新产品尚处于概念阶段即可利用3D拟真技术进行产品测试,通过与消费者互动,让消费者直接参与产品研发,从而更好地满足市场需求。
2. 挖掘网络社交平台信息成为研究消费态度及心理的新手段
QQ、微博、微信等社交平台已日渐成为新生代消费群体不可或缺的社交工具,快速消费品的消费者往往有着极高的从众性,因此针对社交平台的信息挖掘成为研究消费潮流趋势的新手段。例如,通过微博评论可以统计分析消费者对某种功能型产品的兴趣及偏好,这对研究消费态度及心理有非常大的帮助。更重要的是,这类信息属于消费者主动披露,与访谈形式的被动挖掘相比信息的真实性更高。
3. 移动终端提供了实时、动态的消费者信息
随着3G网络及智能手机普及,市场研究已渗透到移动终端领域。大量的手机APP应用(例如二维码扫描等)为实时采集消费信息提供了可能性,移动终端的信息分析在购买时点、产品渗透率及回购率、奖励促销效果评估等方面将发挥不可估量的作用。
4. 零售终端信息采集系统帮助企业了解市场
目前,PC-POS系统在零售终端得到了广泛的应用,只要扫描产品条形码,消费者购买的产品名称、规格、购进价、零售价、购买地点等信息就可以轻松采集。通过构建完整的零售终端信息采集系统,快速消费品企业可以掌握商业渠道的动态信息,适时调整营销策略。
环顾四周,在每个行业中,大数据的增长正在改变我们收集、存储、分析和应用数据的方式。正如很多公司目前正在收集整理的那样,大家面临的共同问题是智能化信息采集、储存及分析。
l 超大容量的数据仓库。数据仓库具有容量大、主题明确、高度集成、相对稳定、反映历史变化等特点,可以有效地支撑快速消费品企业进行大数据分析与应用。数据仓库可以更有效地挖掘数据资源,并可以按照日、周、月、季、年等周期提供分析报表,有助于营销人员更有效地制定营销战略。
l 专业、高效的搜索引擎。旅游搜索、博客搜索、购物搜索、在线黄页搜索等专业搜索引擎已经得到了广泛应用,快速消费品企业可以根据自己的特点构建专业化的搜索引擎,对相关的企业信息、产品信息、消费者评价信息、商业服务信息等数据进行智能化检索、分类及搜集,形成高度专业化、综合性的商业搜索引擎。
l 基于云计算的数学分析模型。市场研究的关键是洞察消费者需求,基于云计算的数学分析模型可以将碎片化信息还原为完整的消费过程信息链条,更好地帮助营销人员研究消费行为及消费心理。这些碎片化的信息包括消费者在不同时间、不同地点、不同网络应用上发布的消费价值观信息、购买信息、产品评论信息等。基于云计算的智能化分析,一方面可以帮助市场研究人员对消费行为及消费心理进行综合分析,另一方云计算成本低、效率高的特点非常适合快速消费品企业数据量庞大的特性。
传统的市场研究包括定性研究及定量研究,以座谈会为主的定性研究受制于主持人的访谈技巧,以街头拦截访问为主的定量研究虽然以严谨的抽样理论为基础,但同样不能完全代表总体的客观情况。而大数据时代革命性的调研方法为市场研究人员提供了以“隐形人”身份观察消费者的可能性,超大样本量的统计分析使得研究成果更接近市场的真实状态。
与此同时,大数据时代的新方法、新手段也带来新的问题,一是如何智能化检索及分析文本、图形、视频等非量化数据,二是如何防止过度采集信息,充分保护消费者隐私。虽然目前仍然有一定的技术障碍,但不可否认的是大数据市场研究有着无限广阔的应用前景。
⑹ 常见的数据检索算法有哪些数据库都采用什么样的检索方式如何提高检索的效率
您好,你的问题,我之前好像也遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!信息检索方法包括:普通法、追溯法和分段法。1、普通法是利用书目、文摘、索引等检索工具进行文献资料查找的方法。运用这种方法的关键在于熟悉各种检索工具的性质、特点和查找过程,从不同角度查找。普通法又可分为顺检法和倒检法。2、追溯法是利用已有文献所附的参考文献不断追踪查找的方法,在没有检索工具或检索工具不全时,此法可获得针对性很强的资料,查准率较高,查全率较差。3、分段法是追溯法和普通法的综合,它将两种方法分期、分段交替使用,直至查到所需资料为止。(6)大数据是如何检索兴趣的扩展阅读检索原因信息检索是获取知识的捷径美国普林斯顿大学物理系一个年轻大学生名叫约瀚·菲利普,在图书馆里借阅有关公开资料,仅用四个月时间,就画出一张制造原子弹的设计图。他设计的原子弹,体积小(棒球大小)、重量轻(7.5公斤)、威力大(相当广岛原子弹3/4的威力),造价低(当时仅需两千美元),致使一些国家(法国、巴基斯坦等)纷纷致函美国大使馆,争相购买他的设计拷贝。二十世纪七十年代,美国核专家泰勒收到一份题为《制造核弹的方法》的报告,他被报告精湛的技术设计所吸引,惊叹地说:“至今我看到的报告中,它是最详细、最全面的一份。”但使他更为惊异的是,这份报告竟出于哈佛大学经济专业的青年学生之手,而这个四百多页的技术报告的全部信息来源又都是从图书馆那些极为平常的、完全公开的图书资料中所获得的。参考资料来源:网络——信息检索,非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
⑺ 大数据需要学习什么样的知识
看从事大数抄据的哪个部分。
大数据分三个部分,数据分析、大数据平台的中台和大数据底层处理。
数据分析:统计专业+一门实际业务+计算机数据分析工具。可以参考研究生BA专业。
数据中台:CS专业+大数据方向的算法 (并行计算、机器学习一类的)。研究生起步。
数据底层处理:一定的软件基础+数据库应用。本科即可。
本科不要学大数据专业,四年学不出来,干啥啥不行。
⑻ 大数据概念是什么,灵玖软件的JZSearch大数据搜索引擎做的怎么样
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
JZSearch大数据搜索引擎是灵玖软件联合中科院与北理工的信息检索专家,针对大数据搜索业务需求而打造的一套搜索引擎,具有专业精准、高扩展性和高通用性的特点。可支持文本、数字、日期、字符串等各种数据类型的高效索引,支持邻近搜索、负面搜索、语义关联搜索,可提供各类数据库的实时搜索服务,并支持少数民族语言。
主要功能:
搜索基本功能包括:
1多字段关联搜索:非结构化与结构化字段的关联搜索,支持指定字段的搜索,也可以搜索多个字段,以及复杂表达式的综合搜索;
2 指定字段排序:可以按照任意指定字段的排序;
3 精确搜索:支持精确匹配以及模糊匹配,默认为模糊匹配,忽略字母大小写,采用双引号进行精确匹配;
搜索特色功能包括:
1 内嵌正负面情感等极性分析,可以搜索任意对象的正负面结果;
2 语义联想搜索:如搜索“马铃薯”可以同时返回“土豆”的内容,搜索“北京市”可以返回“北京”或者“首都”的内容;语义联系词表用户可以自行根据专业知识定制;
3 搜索结果去重:按照指定字段对搜索结果进行去重;
4 邻近搜索功能:可以要求两个关键词必须在一定的词场范围内。
5 内嵌了智能分词系统。
6 数据库实时同步:数据库增删改10秒内即可同步到搜索引擎中
搜索维护功能包括:
1 支持增量索引:系统可以在搜索服务不停的前提下,继续索引新的数据,索引完成后,可以搜索新的数据;
2 自动备份与恢复机制,在建立索引和自动优化之前,在当前索引文件被破坏无法搜索的前提下,系统将自动恢复上次搜索正常的备份文件;
3 自动缓存机制:系统自动保存最近常用的搜索条件与结果,再次搜索时将直接推送搜索结果内容,可以将搜索响应速度提升30%以上;缓存会随着新的索引数据自动更新,不存在缓存延迟问题;
4 自动优化机制:在系统索引碎片较多时,系统会自动优化归并;
5 屏蔽指定文档、指定关键词的搜索服务,也可以恢复屏蔽信息;
6 实现的是多线程搜索服务;
7 兼容当前所有厂商的数据库系统,其中SQL Server, Oracle, MySQL,DB2等。系统支持多表关联搜索;支持Windows/Linux/FreeBSD等操作系统,支持C/C++/C#/Java二次开发。
⑼ 大数据处理
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。