导航:首页 > 数据分析 > 阿里的大数据是如何建立起来的

阿里的大数据是如何建立起来的

发布时间:2023-02-21 19:33:34

㈠ 从IT到DT 阿里大数据背后的商业秘密

从IT到DT:阿里大数据背后的商业秘密

空气污染究竟在多大程度上影响了人们的网购行为?有多少比重的线上消费属于新增消费?为什么中国的“电商百佳县”中浙江有41个而广东只有4个?
这些电商的秘密就隐藏在阿里巴巴商业生态的“大数据”中。
“未来制造业的最大能源不是石油,而是数据。”阿里巴巴董事局主席马云如此形容“数据”的重要意义。
在他看来,阿里巴巴本质上是一家数据公司,做淘宝的目的是为了获得零售的数据和制造业的数据;做蚂蚁金服的目的是建立信用体系;做物流不是为了送包裹,而是这些数据合在一起,“电脑会比你更了解你”。与此同时,产业的发展也正在从IT时代走向以大数据技术为代表的DT时代。
而在阿里巴巴内部,由电子商务、互联网金融、电商物流、云计算与大数据等构成的阿里巴巴互联网商业生态圈,也正是阿里研究院所扎根的“土壤”。
具体而言,阿里巴巴平台的所有海量数据来自于数百万充满活力的小微企业、个人创业者以及数亿消费者,阿里研究院通过对他们的商务活动和消费行为等进行研究分析,从某种程度上可以反映出一个地方乃至宏观经济的结构和发展趋势。
而随着阿里巴巴生态体系的不断拓展和延伸,阿里巴巴的数据资源一定程度上将能够有效补充传统经济指标在衡量经济冷暖方面存在的滞后性,帮助政府更全面、及时、准确地掌握微观经济的运行情况。
从IT到DT
不同于一些企业以技术研究为导向的研究院,阿里研究院副院长宋斐告诉《第一财经日报》记者,阿里研究院定位于面向研究者和智库机构,主要的研究方向包括未来研究(如信息经济)、微观层面上的模式创新研究(如C2B模式、云端制组织模式)、中观层面上的产业互联网化研究(如电商物流、互联网金融、农村电商等)、宏观层面上新经济与传统经济的互动研究(如互联网与就业、消费、进出口等)、互联网治理研究(如网规、电商立法)等。
具体到数据领域,就是在阿里巴巴互联网商业生态基础上,从企业数据、就业数据、消费数据、商品数据和区域数据等入手,通过大数据挖掘和建模,开发若干数据产品与服务。
例如,将互联网数据与宏观经济统计标准对接的互联网经济数据统计标准,包括了中国城市分级标准;网络消费结构分类标准;网上商品与服务分类标准等。
而按经济主题划分的经济信息统计数据库则包括商品信息统计数据库;网购用户消费信息统计数据库;小企业与就业统计数据库;区域经济统计数据库。
还有反映电商经济发展的“晴雨表”——阿里巴巴互联网经济系列指数。其中包括反映网民消费意愿的阿里巴巴消费者信心指数aCCI、反映网购商品价格走势的阿里巴巴全网网购价格指数aSPI和固定篮子的网购核心价格指数aSPI-core、反映网店经营状态的阿里巴巴小企业活跃度指数aBAI、反映区域电子商务发展水平的阿里巴巴电子商务发展指数aEDI等等。其中,现有aSPI按月呈报给国家统计局。
而面向地方政府决策与分析部门的数据产品“阿里经济云图”,则将分阶段地推出地方经济总览、全景分析、监测预警以及知识服务等功能。宋斐告诉记者,其数据可覆盖全国各省、市、区县各级行政单位,地方政府用户经过授权后,可以通过阿里经济云图看到当地在阿里巴巴平台上产生的电子商务交易规模、结构特征及发展趋势。
“借助数据可视化和多维分析功能,用户可以对当地优势产业进行挖掘、对消费趋势与结构变动进行监测、与周边地区进行对比等等。”宋斐表示,该产品未来还可以提供API服务模式,以整合更多的宏观经济数据和社会公开数据,为当地经济全貌进行画像,给大数据时代的政府决策体系带来新的视角和工具
数据会“说话”
对于如何利用“大数据”,马云在公司内部演讲中曾提到:“未来几年内,要把一切业务数据化,一切数据业务化。”
其中,后半句话可以理解为,让阿里巴巴各项业务所产生、积累的大数据来丰富阿里的生态,同时让生态蕴含的数据产生新的价值,再反哺生态,这是一个相辅相成的循环逻辑。
宋斐对记者举例称,蚂蚁金服旗下的芝麻信用已获得人民银行个人征信牌照批准筹备,未来将通过分析大量的网络交易及行为数据,如用户信用历史、行为偏好、履约能力、身份特质、人脉等信息,对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。本质上来说,“芝麻信用”是一套征信系统,该系统收集来自政府、金融系统的数据,还会充分分析用户在淘宝、支付宝等平台的行为记录。
再如,对于如火如荼的农村电商领域,阿里研究院从2010年就已开始对“沙集模式”个案进行研究,后续一系列基于数据和案例调研所驱动的农村电商研究成果,对于地方政府科学决策,推动当地农村电子商务发展、创造就业和发展地方经济起到了助力作用。到2014年底,全国已经涌现了212个淘宝村,而阿里巴巴也在这一年启动千县万村计划,将在三至五年内投资100亿元,在农村建立起电子商务服务体系。
除了通过数据分析去助力业务外,宋斐告诉记者,有时候大数据报告可能会与传统的印象结论差异很大。
以区域电子商务为例,在阿里研究院发布的2014年中国电商百强县排行榜中,浙江有41个县入围,福建有16个,而广东只有4个,这个结果与传统的印象相差比较大。而事实上,这是因为浙江和广东两省电商发展在地理分布、产业结构等方面的明显不同而带来的。
再如,外界常常认为网络零售替代了线下零售,但事实上,麦肯锡《中国网络零售革命:线上购物助推经济增长》的研究报告,通过借鉴阿里研究中心(阿里研究院前身)和淘宝网UED用户研究团队的大量报告与数据,最后发现:“约60%的线上消费确实取代了线下零售;但剩余的40%则是如果没有网络零售就不会产生的新增消费。”
“这一研究成果,有助于社会各界准确认识网络零售与线下零售的关系,共同探索和建设良好的商业发展环境。”

㈡ 阿里巴巴:什么才是大数据思维

大数据实际上是营销的科学导向的自然演化。大数据思维有三个纬度——定量思维、相关思维、实验思维。
第一,定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面;第二,相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好;第三,实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。
这就是三个大数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。

㈢ 为什么阿里巴巴会斥资百亿在乌兰察布市建立大数据平台

为了推进华为、苹果北方数据、阿里巴巴、优刻得、中联利信、同舟汇通等大数据项目建设运营,集宁区借助京蒙对口帮扶,在察哈尔工业园区内规划建设了 6.5 平方公里的大数据产业园,推动大数据项目的发展及信息化建设、信息产业发展。

阿里云已经走在了亚洲云计算的前列,如今它已经正式对外宣布,会在中国的乌兰察布市建立一个大数据中心。消息一出,引得无数人摸不着头脑,都不知道啊,阿里云为什么要在这个名不见经传的城市,做这么重要的战略布局。

加大大数据产业基础设施投资力度,同时也在加快数据中心建设之步伐,2019年,共续建、新建及拟建数据中心项目 8 项,计划总投资 171.8亿元,总占地面积 1220 亩,承载 100 万台服务器。不难看出乌兰察布市现在正在以数据存储、产品研发、数据交易为核心的大数据中心建成后,将铸就高新科技产业载体,夯实大数据产业发展的基础层,进一步拓展上下游产业和配套产业,实现产业体系全覆盖的准备进行中。

这就是为什么阿里巴巴为什么会斥资百亿在乌兰察布市建立大数据平台。不仅满足当下以及未来大数据产业发展、互联网经济发展需求,提高传统劳动力数字技能、提升数字化素养,也符合乌兰察布市政府以及国家对此的重视,让其共同来努力推动“互联网+”及云计算、电子信息产品制造、电子商务和服务外包等关联产业协同发展,倾力打造成为面向华北、服务京津冀的大数据与云计算中心,打响“草原云谷”的品牌,擎画大数据产业发展的蓝图,深化大数据和云计算各领域应用。

㈣ 如何搭建大数据分析平台

1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

㈤ 阿里巴巴怎样起家,又如何发展起来的

1999年9月,马云带领下的18位创始人在杭州的公寓中正式成立了阿里巴巴集团,集团的首个网站是英文全球批发贸易市场阿里巴巴。同年阿里巴巴集团推出专注于国内批发贸易的中国交易市场(称“1688”)。

1999年10月,阿里巴巴集团从数家投资机构融资500万美元。

2000年1月,阿里巴巴集团从软银等数家投资机构融资2,000万美元。

2004年12月,阿里巴巴集团关联公司的第三方网上支付平台支付宝推出。

2007年11月,阿里巴巴网络有限公司在香港联交所主板挂牌上市。同月,阿里巴巴集团成立网络广告平台阿里妈妈。

2008年4月,淘宝网推出专注于服务第三方品牌及零售商的淘宝商城。

2011年6月16日,阿里巴巴集团宣布将淘宝网分拆为三家公司一淘网、淘宝网、淘宝商城。

2014年9月19日,阿里巴巴集团于纽约证券交易所正式挂牌上市,股票代码“BABA”。

2015年2月10日,阿里巴巴集团宣布与蚂蚁金服集团完成重组,蚂蚁金服为支付宝的母公司。

2015年11月6日,阿里巴巴集团和优酷土豆集团宣布,双方已经就收购优酷土豆股份签署并购协议,根据这一协议,阿里巴巴集团将收购优酷土豆集团。这项交易将以全现金形式进行。

2018年8月15日,Kroger与阿里巴巴达成合作,在中国出售坚果、膳食补充类等产品。

2018年9月10日,马云宣布,2019年9月10日将不再担任董事局主席,CEO张勇接任。

2019年6月6日,阿里巴巴集团提交上市公司年报。年报显示,2019财年,阿里巴巴集团收入达3768.44亿元。年报中,阿里还公布了最新的38位合伙人名单。

(5)阿里的大数据是如何建立起来的扩展阅读:

马云

阿里巴巴集团主要创始人,于2013年5月出任阿里巴巴集团执行主席。自1999年集团成立以来直至2013年5月,马云一直兼任主席及首席执行官,同时是浙江马云公益基金会创立者。

马云担任日本软银的董事,世界经济论坛(WEF)基金会董事、英国政府特别经济顾问、浙商总会会长、中国企业家俱乐部主席。2016年1月,成为联合国“可持续发展目标”的倡导者。

蔡崇信

1999年加入阿里巴巴集团,是公司创始人之一,于2013年5月出任阿里巴巴集团执行副主席。此前,蔡崇信一直担任集团首席财务官及董事会成员。自2015年9月,担任阿里健康非执行董事。蔡崇信现担任多家获阿里巴巴集团投资的公司之董事。

张勇

2007年加盟阿里巴巴集团,于2015年5月出任阿里巴巴集团首席执行官。他同时是阿里巴巴集团董事及阿里巴巴合伙人创始成员。自2013年9月起,担任阿里巴巴首席运营官。同时担任美国和香港多家上市公司的董事,包括阿里健康、海尔电器、银泰商业集团和微博等。

㈥ 盘点阿里旅行周年:这样用大数据颠覆行业

盘点阿里旅行周年:这样用大数据颠覆行业

日前在阿里旅行成立一周年的时候,总裁李少华刚刚发送了《写给阿里旅行的365天》的全员信。邮件指出:阿里旅行提供的是旅行行业的“水电煤”;将阿里平台上宝贵的大数据应用起来,帮助旅行商家和合作伙伴更高效的连接消费者,以用户为中心重构供需关系,以平台大数据支撑个性化服务。

这句话理解起来可能有点深奥,不过将旅游之前和旅游中用户遭遇的各种坑与阿里旅行这1年来做的事情串起来,或许就能明白他们是如何利用大数据在颠覆行业了。

先说今年微文在两次旅行前办理签证中亲身遭遇到的一些坑吧:

1、因为穷所以我很早之前就开始准备十一期间旅游的事,货比三家后在某家B2C旅游网站选择了出境游,之后按照网站工作人员的提示开始准备漫长的签证材料,好不容易经过漫长的等待资料全凑齐邮给那家B2C网站的客服,等了几天却被客服告知我提交的资料不符,而且时间也比较紧张了,他们那里没办法帮我办签证,让我自己想办法解决。我愤怒的提出退款,结果被告知酒店和机票都已经预定,没有办法做退款处理。最后我索性死马当活马医,告诉客服如果不递交材料那是他们的问题,如果递交上去使馆没出签,我自己承担责任。最后顺利拿到签证,出去玩。

2、今年8月我的在某家创业型B2C网站上续签美国签证(选择他们是因为他们自称专注于美国旅游,非常专业),结果客服一会告诉我照片不符合要求,一会告诉我缺这个少那个,可我是按照美国大使馆网上提供的资料来准备的啊,几次沟通无果,最后没办法找了他们联合创始人问题才得以解决,最终一张纸的材料我也没补交,大使馆给了10年的美签。

经过这两件事情我就在捉摸,很多时候不是大使馆不给旅游者发签证,而是你委托的商业公司在想尽办法给用户制造门槛和难题,既然互联网是以用户体验为核心竞争力的行业,那有为什么会出现在线旅行行业处处刁难客户的情况呢?

后来经过高人指点终于明白,原来很多做在线旅行的互联网公司不好判断申请签证的人是否可信赖,如果一旦出现旅客在境外逾期滞留,会非常影响这些互联网公司同使馆的信任度,最终影响到其业务,所以才导致了上述情况的出现。

那么有没有可能用大数据来解决这个难题呢?肯定有,问题是由于这些做在线旅游的互联网公司数据往往不够全面,所以大数据虽然在做,但是却不够准确,很多时候还是只能由人工来判断。那么号称数据最全的阿里有没有可能做这件事儿呢?

就在我思考这个问题的时候,发现他们已经开始做了,下面不妨先来盘点一下阿里旅行这一年的重要事件:

1、今年3月,阿里旅行推出信用住计划,芝麻信用良好的用户在阿里旅行预定信用住酒店,就可体验“零押金无担保急速退房“服务。与传统模式相比:用户在阿里旅行预订

酒店时,芝麻分达到600分即可选择信用住。先入住后付款,无需担保零押金,离店时也无需排队,只需把门卡放到前台,系统会自动从用户的支付宝账户里扣除房费。

2、随后阿里旅行发布了与芝麻信用结合的“未来酒店”战略,首间未来酒店样板店坐落在浙江杭州的学院路,不论来自什么预订渠道的用户,不管是否提前预订了酒店,在办理入住时,均可通过扫码的形式实时进行信用判定,满足芝麻信用分要求——600分即可马上开始体验信用住的便捷,不用交押金即可直接领房卡入住,退房时也不用等查房和排队付款,将房卡交给前台即可离店,房费将通过支付宝自动扣除。

3、今年6月,阿里旅行与卢森堡大公国驻上海总领事馆签署合作协议,正式将卢森堡纳入便捷在线签证目的地。当用户的芝麻信用分符合阿里旅行规定的标准,便可在阿里旅行·去啊的签证频道选择在线签证服务。传统签证一般需要5-10天,而在线签只需2-3天且不需要提供繁琐的纸质材料。在此之前,新加坡作为首个便捷在线签证目的地已经在阿里旅行签证频道正式上线。接下来,阿里旅行还会在法国、英国、韩国、日本、比利时、斯里兰卡等出境游热门目的地展开在线签证。公开数据显示,目前每分钟就有16.8个人通过阿里旅行买了签证/入台证办理服务。

4、9月22日,阿里旅行启动“未来景区”战略,游客可以先游玩再付款,免去排队买票之苦,在景区里也可以“身无分文”,全程用手机付款吃喝玩乐,更可使用手机进行景区游览导航,寻卫生间找停车场都不再发愁。深圳东部华侨城已经率先加入“未来景区”战略,黄山、乌镇、古北水镇、海昌集团在全国的8个极地海洋馆也将于近期上线。在“未来景区”游玩时,只要芝麻信用分达到600分,即可提前一天在阿里旅行客户端进行预约,预约成功后会获得一个二维码,到了景区门口可以直接扫码入园,不需再另外排队买票或换票,而门票钱会在游客刷码入园后24小时自动从支付宝账户中扣除,不需要再另外执行任何操作。

事实上,无论是信用住、未来酒店、未来景区还是在线签证,这些便捷服务背后都在于蚂蚁信用进行挂钩,而蚂蚁信用的背后则是通过大数据对用户进行筛选和再判断,通过大数据取代人工审核。此外,阿里在旅游行业投资的穷游、在路上、佰程旅行网及石基信息等公司的数据也将对阿里旅行提供支持。

最后不得不感慨一下,早知道在线旅游的B2C这么不靠谱我当时就应该选择阿里旅行。而未来一旦像我这样的小白用户开始尝试并习惯通过芝麻信用与阿里旅行挂钩的方式选择出行的时候,阿里旅行的势能也就无法撼动了。

1969年7月20日,美国宇航员阿姆斯特朗登月后说,这是我个人的一小步,但却是全人类的一大步。对于仅仅成立1年的阿里旅行而言,单一产品上的改进或许只是一小步,但是将芝麻信用、大数据与用户体验挂钩的思路确是互联网的一大进步。

以上是小编为大家分享的关于盘点阿里旅行周年:这样用大数据颠覆行业的相关内容,更多信息可以关注环球青藤分享更多干货

㈦ 阿里的总监将大数据、数字化的经验,总结成资料干货,可以收藏

阿里把企业的数字化转型划分为“数字化重构”和“数字化增长”两大类别,这个概念是不是听着很难懂?

重构,就是转型嘛;增长,就是更进一步嘛,说白了还是原来的老样子,换了个解释而已。

说到数字化转型,我觉得这是一个非常好的话题,甚至能衍生出很多干货,无论是传统企业,还是顶尖的互联网大公司,如阿里腾讯,老板都在朝这个方向努力。

所以和大数据有关的知识,还是很有必要学习的。

我给大家整理了很多干货,我从一个10年从业者和管理者的角度,这份干货,无论是底层干活的,中层管控的,上层布局的,都能够很清楚的学习到。

涉及到的方面还是很广的:大数据、数仓、中台、AI、IT规划、大数据平台、BI工具。

我是怎么总结的?

从架构入手,到每个模块的分解,再到每个地方的注意点,基本上就行了,太细的也不是通过文字去说清楚的。

只要能做到,看了干货资料,能对实际工作产生指导,就可以了。

这只是一部分,还有更多,自己来看就好。

㈧ 7.阿里大数据——大数据建模

数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。
适合业务和基础数据存储环境的模型,大数据能获得以下好处:

大数据系统需要数据模型方法来帮助更好的组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。

不管是Hadoop、Spark还是阿里巴巴集团的MaxCompute系统,仍然在大规模使用SQL进行数据的加工和处理,仍然在用Table存储数据,仍然在使用关系理论描述数据之间的关系,只是在大数据领域,基于其数据存取的特点在关系数据模型的范式上有了不同的选择而已。

从全企业的高度设计一个3NF模型,用实体关系(Entity Relationship,ER)模型描述企业业务,在范式理论上符合3NF。数据仓库中的3NF与OLTP中不同过,有以下特点:

ER模型建设数据仓库的出发点是整合数据,为数据分析决策服务。建模步骤分为三个阶段:

维度建模从分析决策的需求出发构建模型,为分析需求服务,因此它重点关注用户如何更快速地完成需求分析,同时具有较好的大规模复杂查询的响应性能。其典型代表事星形模型,以及在一些特殊场景下使用的雪花模型。其设计步骤如下:

它是ER模型的衍生,其设计的出发点也是为了实现数据的整合,但不能直接用于数据分析决策。它强调建立一个可审计的基础数据层,也就是强调数据的历史性、可追溯性和原子性,而不要求对数据进行过度的一致性处理和整合。该模型由一下几部分组成:

Anchor对Data Vault模型做了进一步规范化处理,设计的初衷是一个高度可扩展的模型,其核心思想是所有的扩展只是添加而不是修改,因此将模型规范到6NF,基本变成了k-v结构化模型。组成如下:

经历了多个阶段:

㈨ 阿里,腾讯和百度的互联网大数据应用有何不同

阿里,腾讯和网络的互联网大数据应用有何不同

网络、阿里巴巴和腾讯三大互联网企业都拥有大数据,三大互联网巨头的数据都用来优化自己业务的运营效果,从这个层面看,其数据价值应用场景比较类似。但由于其业务和商业模式的不同决定了三者数据资产的不同,也决定了三者未来大数据策略的不同,尤其是基于大数据的开放和合作角度看,网络和阿里巴巴相对更加开放。对于重视大数据开放和合作的互联网企业,他们最为期待的是借着大数据开放的策略,与更多的传统行业交换更多的数据,从而更好的丰富其在线下数据,形成线上和线下数据的协同,从中拓展新的商业模式,如智能硬件和大数据健康。

BAT的互联网大数据应用有何不同

从数据类型看,腾讯数据最为全面,这与其互联网业务全面相关,其最为突出的是社交数据和游戏数据,其中:社交数据最为核心的是关系链数据、用户间的互动数据、用户产生的文字、图片和视频内容;游戏数据主要包括大型网游数据、网页游戏数据和手机游戏数据,游戏数据中最为核心的是游戏的活跃行为数据和付费行为数据,腾讯的数据最大的特点是基于社交的各种用户行为和娱乐数据。阿里最为突出的是电商数据,尤其是用户在淘宝和天猫上的商品浏览、搜索、点击、收藏和购买等数据,其数据最大特点是从浏览到支付形成的用户漏斗式转化数据。网络的数据以用户搜索的关键词、爬虫抓取的网页、图片和视频数据为主,网络的数据特点是通过搜索关键词更直接反映用户兴趣和需求,网络的数据以非结构化数据更多。
网络、阿里巴巴和腾讯的数据应用场景
网络、阿里巴巴和腾讯的数据应用场景都有共同的体系,该体系一共分为七层,代表了企业不同层面的数据价值应用场景,形成了企业运营的数据价值金字塔:
(1)数据基础平台层。金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果,这一层的技术目标是实现数据的有效存储、计算和质量管理;业务目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(如性别、年龄等)、行为以及兴趣爱好等,以达到全面的了解用户(客户)的目的;
(2)业务运营监控层。这一层首要的是搭建业务运营的关键数据体系,在此基础上通过智能化模型开发出来的数据产品,监控关键数据的异动,通过各种分析模型等可以快速定位数据异动的原因,辅助运营决策;
(3)用户/客户体验优化层。这一层主要是通过数据来监控和优化用户/客户的体验问题。这里面既运用了结构化的数据来监控,也运用非结构化的数据(如文本)来监控体验的问题。前者更多的是应用各种用户(客户)体验监测的模型或者工具来实现,后者更多的是通过监测微博、论坛和企业内部的客户反馈系统的文本来发现负面的口碑,以及时的优化产品或服务;
(4)精细化运营和营销层。这一层主要通过数据驱动业务精细化运营和营销。主要可以分为四方面:第一,构建基于用户的数据提取和运营工具,以方便运营和营销人员通过人群定向把客户提取出来,从而对客户进行营销或运营活动;第二方面,通过数据挖掘的手段提升客户对活动的响应;第三,通过数据挖掘的手段进行客户生命周期管理;第四,主要是用个性化推荐算法基于用户不同的兴趣和需求推荐不同的商品或者产品,以实现推广资源效率和效果最大化,如淘宝商品的个性化推荐;
(5)数据对外服务和市场传播层面。数据对外服务一般为服务该互联网企业的客户或用户,如网络通过提供网络舆情、网络代言人、网络指数等服务其广告主客户;淘宝通过数据魔方、淘宝情报和在云端等产品服务其客户;腾讯通过腾讯分析和腾讯云分析等服务其开放商客户。在市场传播层面,主要通过有趣的数据信息图谱和数据可视化产品来实现(如淘宝指数、网络指数、网络春节迁徙地图)。
(6)经营分析层面。主要通过分析师对大数据进行统计,形成经验分析周报、月报和季度报告等,对用户经营情况和收入完成等情况进行分析,发现问题,优化经营策略。
(7)战略分析层面。这方面既要结合内部的大数据形成决策层的数据视图,也要结合外部数据尤其是各种竞争情报监控数据、国外趋势研究数据来辅助决策层进行战略分析。
虽然网络、阿里巴巴和腾讯在企业运营的数据价值的应用体系上有共同的特点,但由于企业的商业模式以及数据资产不同,他们在整体的大数据发展策略也有显著的不同。
网络大数据策略
网络大数据最重要的是来源是通过爬虫搜集的100多个国家的近万亿网页数据,数据量是在EB级的规模。网络的数据非常多样化,其收集的数据既有为非结构化的或者半结构化的数据,包括网页数据、视频和图片等数据,也有结构化的数据,如用户的点击行为数据,广告客户的付费行为数据等。
网络大数据主要服务三类人群:一类是互联网网民,通过大数据和自然语言处理技术让网民的搜索更加准确;第二类是广告主,通过大数据让广告主的广告和搜索关键词的匹配度更高,或者和网民正在看的网页内容匹配度更高;第三类是,也是在重点推进的网络大数据引擎,重点是服务传统行业拥有一定规模数据的企业。
网络大数据引擎代表了互联网企业数据服务能力开放和合作的趋势,网络大数据引擎由以下三方面构成:
开放云:网络的大规模分布式计算和超大规模存储云,开放云大数据开放的是基础设施和硬件能力。过去的网络云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。据网络相关人员称,网络开放云还拥有CPU利用率高、弹性高、成本低等特点。网络是全球首家大规模商用ARM服务器的公司,而ARM架构的特征是能耗小和存储密度大,同时网络还是首家将GPU(图形处理器)应用在机器学习领域的公司,实现了能耗节省的目的。
数据工厂:数据工厂为网络将海量数据组织起来的软件能力,与数据库软件的作用类似,不同的是数据工厂是被用作处理TB级甚至更大的数据。网络数据工厂支持超大规模异构数据查询,支持SQL-like以及更复杂的查询语句,支持各种查询业务场景。同时网络数据工厂还将承载对于TB级别大表的并发查询和扫描,大查询、低并发时每秒可达百GB。
网络大脑:网络大脑将网络此前在人工智能方面的能力开放出来,主要是大规模机器学习能力和深度学习能力。此前它们被应用在语音、图像、文本识别,以及自然语言和语义理解方面,并通过网络Inside等平台开放给了智能硬件。现在这些能力将被用来对大数据进行智能化的分析、学习、处理、利用,并对外开放。
网络将基础设施能力、软件系统能力以及智能算法技术打包在一起,通过大数据引擎开放出来之后,拥有大数据的行业可以将自己的数据接入到这个引擎进行处理。从架构来看,企业或组织也可以只选择三件套中的一种来使用,例如数据存放在自己的云,但要运用网络大脑的一些智能算法或者数据存放在网络云,自己写算法。
网络大数据引擎的作用
我们可以从两方面来具体看网络大数据引擎的作用:
(1)对于 *** 机构:如交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,如果这些数据与网络的搜索记录、全网数据、LBS数据结合,在利用网络大数据引擎的大数据能力,则可以实现智能路径规划和运力管理;卫生部门拥有流感法定报告数据、全国流感样病例哨点监测和病原学监测数据,如果和网络的搜索记录及全网数据结合,便可进行流感预测、疫苗接种指导。
(2)对于企业:很多企业也拥有海量大数据,不过很多企业的大数据处理和挖掘能力比较弱,如果应用网络大数据引擎,则可以对海量数据进行可靠低成本的存储,进行智能化的由浅入深的价值挖掘。如在2014年4月的网络技术开放日上,中国平安便介绍了如何利用网络的大数据能力加强消费者理解和预测,细分客户群制定个性化产品和营销方案。
阿里巴巴大数据策略
阿里巴巴大数据整体发展方向是以激活生产力为目的的DT(data technology,数据技术驱动)数据时代发展。阿里巴巴大数据未来将由“基于云计算的数据开放+大数据工具化应用”组成:
(1)基于云计算的数据开放。云计算使中小企业可以在阿里云上获得数据存储、数据处理服务,也可以构建自己的数据应用。云计算是数据开放的基础,云计算可以为全球的数据开发者提供数据工作平台,阿里分布式的存储平台和在这个平台上的算法工具,可以更好的为数据开发者所用;同时,阿里巴巴还需要做好数据的脱敏,把数据的商业定义,每个标签打得足够清晰,能够让全球的数据开发者在阿里巴巴平台展开数据思维,让数据为 *** 所用、消费者所用以及行业所用。阿里的大数据开放之后,线上线下的数据能够串联起来,所有人都是数据提供方,也是数据的使用者。
(2)在大数据应用上,马云已经在整个数据应用上确定了两个方针:
第一个方针:从IT到DT(数据技术),DT就是点燃整个数据和激发整个数据的力量,被管理所用,被社会所用,被销售所用,为制造业所用,为消费者信用所用。前文已经分析道,阿里巴巴的数据资产是以电商为主,其中,淘宝和天猫每天会产生丰富多样的数据,阿里巴巴已经沉淀了包括交易、金融、生活服务等多种类型的数据。这些数据能够帮助阿里巴巴进行数据化运营(如下图)。
另外一个其最为重要的应用是金融领域——小微金融。在小微金融企业融资领域。由于银行无法掌握小微企业真实的经营数据,不仅导致很多企业无法拿到贷款,还因为数据类型的不足导致整个判断流程过长,阿里已经通过其电商数据中的交易、信用、SNS等多种数据来决定是否可以发放贷款以及放贷的额度。
第二个方针:让阿里巴巴的数据、让阿里巴巴的工具能够成为中国商业的基础设施。阿里巴巴已经开始在转型,阿里将由自己直接面对消费者变成支持网商面对消费者,阿里会根据其已有的运营和数据经验,开发更多的工具,帮助网商成长,让网商们更懂得用最好的工具、服务去服务好消费者。正如马云所言“我相信没有一个网商不希望拥有自己的客户,没有一个网商不希望知道客户对自己的体验到底好还是坏,如何持久的拥有这些客户,我们觉得一个国家的经济,应该让给企业家群体去做,我们觉得淘宝网商未来的经济,是应该留给网商们去决定,而不是我们去做决定”。
腾讯大数据策略
腾讯的大数据目前更多的是为腾讯企业内部运营服务,相对于阿里和网络,数据开放程度并不高。因此,对于腾讯我们主要重点介绍腾讯大数据在服务企业内部的应用场景和服务。
腾讯90%以上的数据已经实现集中化管理,数据集中在数据平台部,有超过100多个产品的数据已经集中管理起来,而且是集中存储在腾讯自研数据仓库(TDW)。腾讯大数据从数据应用的不同环节可以分为四个层面,包括数据分析、数据挖掘、数据管理和数据可视化:
(1)数据分析层有四个产品:自助分析、用户画像、实时多维度分析和异动智能定位工具。自助分析可以帮助非技术人员通过简单的条件配置实现数据的统计和展示功能;用户画像则是对某一群用户或者某一业务的用户实现自动化的人群画像;实时多维度分析工具则是可以对某一指标可以实现实时的多个维度的切分,方便分析人员从不同角度对某一指标进行多维度分析;异动智能定位工具则实现数据异动问题的智能化定位。
(2)数据挖掘层面的产品应用有:精准广告系统、用户个性化推荐引擎和客户生命周期管理。精准广告系统如广点通,是基于腾讯大社交平台的海量数据为基础,通过精准推荐算法,以智能定向推广位导向实现广告精准投放;用户个性化推荐引擎根据每位用户的兴趣和喜好,通过个性化推荐算法(协同过滤、基于内容推荐、图算法、贝叶斯等),实现产品的个性化推荐需求;客户生命周期管理系统,则是基于大数据,根据用户/客户的所处的不同生命周期进行数据挖掘,建立预测、预警和用户特征模型,以根据用户/客户所处的不同生命周期特点进行精细化运营和营销。
(3)在数据管理层面则有:TDW(腾讯数据仓库)、TDBank(数据银行)、元数据管理平台和任务调度系统和数据监控。这一层面主要是实现数据的高效集中存储、数据的业务指标定义管理、数据质量管理、计算任务的及时调度和计算以及数据问题的监控和告警。
(4)在数据可视化层面有:自助报表工具、腾讯罗盘、腾讯分析和腾讯云分析等工具。自助报表工具可以自助化的实现结构相对简单和逻辑相对简单的报表。腾讯罗盘分为内部版和外部版,内部版则是服务于腾讯内部用户(产品经理、运营人员和技术人员等)的高效报表工具,外部版则是服务于腾讯合作伙伴如开发商的报表工具。腾讯分析是网站分析工具,帮助网站主进行网站的全方位分析。腾讯云分析则是帮助应用开发商决策和运营优化的分析工具。
总的来看,网络、阿里巴巴和腾讯三大互联网企业都拥有大数据,三大互联网巨头的数据都用来优化自己业务的运营效果,从这个层面看,其数据价值应用场景比较类似。但由于其业务和商业模式的不同决定了三者数据资产的不同,也决定了三者未来大数据策略的不同,尤其是基于大数据的开放和合作角度看,网络和阿里巴巴相对更加开放。对于重视大数据开放和合作的互联网企业,他们最为期待的是借着大数据开放的策略,与更多的传统行业交换更多的数据,从而更好的丰富其在线下数据,形成线上和线下数据的协同,从中拓展新的商业模式,如智能硬件和大数据健康。

bat的互联网大数据应用有何不同

这个得从BAT各自的基因来分析。网络主要是以搜索产品,所以大数据对于网络来说主要用于搜索方面,使搜索更加的精准和匹配;阿里巴巴以电子商务为主,所以大数据对于阿里巴巴来说会主要用户商品方面;腾讯主要是社交,所以大数据对于腾讯来说可能更多的应用于社会网络分析。大数据的主要用途为预测,所以BAT对于大数据的共同点都是为了通过对用户的分析,进行更加准确的服务和营销。

看网络,阿里与腾讯是如何利用互联网大数据应用

阿里有数据魔方,为卖家提供收费服务。

网络里,“互联网”和“所有空间”有何不同?

“互联网”

“所有空间”
互联网 就是指Inter上所有的信息
对网络来说
主要就是中文信息
所有空间
就是指网络中的所有用户
建了网络空间
(博客+相册+留言板)
显然搜索后者
是不包括网络空间 以外的博客的

如何获取并应用互联网大数据

大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。
大数据时代下的精准营销是指通过大数据获取对象的喜好,行为偏好,对不同对象进行不同营销。大数据精准营销的核心可以概括为几大关键词:用户、需求、识别、体验。
亿美软通推出数据云服务,延续亿美的客户服务、客户营销、客户管理的公司经营理念,通过庞大的消费数据资源,为客户提供数据验证,精准营销等数据级服务。简单说就是为企业提供数据验证和数据筛选业务。
-

互联网大数据培训应用前景如何?

不用担心,学好了就会有好的前景。{变量9}

大数据和小数据有何不同?

1.大数据重预测,小数据重解释;2.大数据重发现,而小数据重实证;3.大数据重相关,小数据重因果;4.大数据重全体,小数据重抽样;5.大数据重感知,小数据重精确。

企业数据中心和互联网数据中心有何不同

DCCI互联网数据中心(DCCI DATA CENTER OF CHINA INTERNET,简称DCCI),互联网监测研究权威机构&数据平台,互动营销之测量、分析、优化服务提供者。以Panel软件、代码嵌入、海量数据挖掘、语义信息处理等多种领先技术手段为基础,进行网站、用...

互联网数据中心:是idc 他是主要存放网络数据的(网站+数据+下载站点等)囊括比较广泛,任何的正规企业或者是中小型站长都是可以进行选择的。
企业数据中心:它的更加具有针对性,它可以隶属于互联网数据中心的一部分的。

㈩ 如何创建一个大数据平台

所谓的大数据平台不是独立存在的,比如网络是依赖搜索引擎获得大数据并开展业务的,阿里是通过电子商务交易获得大数据并开展业务的,腾讯是通过社交获得大数据并开始业务的,所以说大数据平台不是独立存在的,重点是如何搜集和沉淀数据,如何分析数据并挖掘数据的价值。

我可能还不够资格回答这个问题,没有经历过一个公司大数据平台从无到有到复杂的过程。不过说说看法吧,也算是梳理一下想法找找喷。
这是个需求驱动的过程。
曾经听过spotify的分享,印象很深的是,他们分享说,他们的hadoop集群第一次故障是因为,机器放在靠窗的地方,太阳晒了当机了(笑)。从简单的没有机房放在自家窗前的集群到一直到现在复杂的数据平台,这是一个不断演进的过程。
对小公司来说,大概自己找一两台机器架个集群算算,也算是大数据平台了。在初创阶段,数据量会很小,不需要多大的规模。这时候组件选择也很随意,Hadoop一套,任务调度用脚本或者轻量的框架比如luigi之类的,数据分析可能hive还不如导入RMDB快。监控和部署也许都没时间整理,用脚本或者轻量的监控,大约是没有ganglia、nagios,puppet什么的。这个阶段也许算是技术积累,用传统手段还是真大数据平台都是两可的事情,但是为了今后的扩展性,这时候上Hadoop也许是不错的选择。
当进入高速发展期,也许扩容会跟不上计划,不少公司可能会迁移平台到云上,比如AWS阿里云什么的。小规模高速发展的平台,这种方式应该是经济实惠的,省了运维和管理的成本,扩容比较省心。要解决的是选择平台本身提供的服务,计算成本,打通数据出入的通道。整个数据平台本身如果走这条路,可能就已经基本成型了。走这条路的比较有名的应该是netflix。
也有一个阶段,你发现云服务的费用太高,虽然省了你很多事,但是花钱嗖嗖的。几个老板一合计,再玩下去下个月工资发布出来了。然后无奈之下公司开始往私有集群迁移。这时候你大概需要一群靠谱的运维,帮你监管机器,之前两三台机器登录上去看看状态换个磁盘什么的也许就不可能了,你面对的是成百上千台主机,有些关键服务必须保证稳定,有些是数据节点,磁盘三天两头损耗,网络可能被压得不堪重负。你需要一个靠谱的人设计网络布局,设计运维规范,架设监控,值班团队走起7*24小时随时准备出台。然后上面再有平台组真的大数据平台走起。
然后是选型,如果有技术实力,可以直接用社区的一整套,自己管起来,监控部署什么的自己走起。这个阶段部署监控和用户管理什么的都不可能像两三个节点那样人肉搞了,配置管理,部署管理都需要专门的平台和组件;定期Review用户的作业和使用情况,决定是否扩容,清理数据等等。否则等机器和业务进一步增加,团队可能会死的很惨,疲于奔命,每天事故不断,进入恶性循环。
当然有金钱实力的大户可以找Cloudera,Hortonworks,国内可以找华为星环,会省不少事,适合非互联网土豪。当然互联网公司也有用这些东西的,比如Ebay。
接下去你可能需要一些重量的组件帮你做一些事情。
比如你的数据接入,之前可能找个定时脚本或者爬log发包找个服务器接收写入HDFS,现在可能不行了,这些大概没有高性能,没有异常保障,你需要更强壮的解决方案,比如Flume之类的。
你的业务不断壮大,老板需要看的报表越来越多,需要训练的数据也需要清洗,你就需要任务调度,比如oozie或者azkaban之类的,这些系统帮你管理关键任务的调度和监控。
数据分析人员的数据大概可能渐渐从RDBMS搬迁到集群了,因为传统数据库已经完全hold不住了,但他们不会写代码,所以你上马了Hive。然后很多用户用了Hive觉得太慢,你就又上马交互分析系统,比如Presto,Impala或者SparkSQL。
你的数据科学家需要写ML代码,他们跟你说你需要Mahout或者Spark MLLib,于是你也部署了这些。
至此可能数据平台已经是工程师的日常工作场所了,大多数业务都会迁移过来。这时候你可能面临很多不同的问题。
比如各个业务线数据各种数据表多的一塌糊涂,不管是你还是写数据的人大概都不知道数据从哪儿来,接下去到哪儿去。你就自己搞了一套元数据管理的系统。
你分析性能,发现你们的数据都是上百Column,各种复杂的Query,裸存的Text格式即便压缩了也还是慢的要死,于是你主推用户都使用列存,Parquet,ORC之类的。
又或者你发现你们的ETL很长,中间生成好多临时数据,于是你下狠心把pipeline改写成Spark了。
再接下来也许你会想到花时间去维护一个门户,把这些零散的组件都整合到一起,提供统一的用户体验,比如一键就能把数据从数据库chua一下拉到HDFS导入Hive,也能一键就chua一下再搞回去;点几下就能设定一个定时任务,每天跑了给老板自动推送报表;或者点一下就能起一个Storm的topology;或者界面上写几个Query就能查询Hbase的数据。这时候你的数据平台算是成型了。
当然,磕磕碰碰免不了。每天你都有新的问题和挑战,否则你就要失业了不是?
你发现社区不断在解决你遇到过的问题,于是你们架构师每天分出很多时间去看社区的进展,有了什么新工具,有什么公司发布了什么项目解决了什么问题,兴许你就能用上。
上了这些乱七八糟的东西,你以为就安生了?Hadoop平台的一个大特点就是坑多。尤其是新做的功能新起的项目。对于平台组的人,老板如果知道这是天然坑多的平台,那他也许会很高兴,因为跟进社区,帮忙修bug,一起互动其实是很提升公司影响力的实情。当然如果老板不理解,你就自求多福吧,招几个老司机,出了问题能马上带路才是正道。当然团队的技术积累不能不跟上,因为数据平台还是乱世,三天不跟进你就不知道世界是什么样了。任何一个新技术,都是坑啊坑啊修啊修啊才完善的。如果是关键业务换技术,那需要小心再小心,技术主管也要有足够的积累,能够驾驭,知道收益和风险。

阅读全文

与阿里的大数据是如何建立起来的相关的资料

热点内容
数控715螺纹编程怎么写 浏览:261
extjs获取grid选中行 浏览:873
数据线充电强制锁屏是什么原因 浏览:923
保证能贷款的app 浏览:105
adb文件夹大小 浏览:78
数据库browser 浏览:458
爱丽丝梦游仙境x级版本 浏览:636
windows登陆linux 浏览:851
如何用excel抠文件印章 浏览:24
苹果4s的div设置 浏览:638
网络管理员考试教材 浏览:201
c配置文件在c盘哪里 浏览:694
可配置文件翻译 浏览:879
如何把纸文件扫描成pdf 浏览:514
plc博途编程中除法取整怎么取 浏览:717
950客服代码 浏览:463
ghost支持linux吗 浏览:927
文件生命周期理论有哪些内容 浏览:278
百度云盘批量转存工具 浏览:949
qq上说购买q币真的假的 浏览:589

友情链接