Ⅰ 环境感知数据集包括哪些
完整的数据集应包括立体数据、光流数据、视觉里程计数据、目标跟踪数据、道路解析数据等。
Ⅱ 大数据能做什么
随着互联网时代的迅猛发展,大数据全面融入了现代社会的生产、生活中,并将大大改变全球的经济。大数据,它其实不仅仅是一种技术,更是战略资源。
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素各行各业的决策正在从“业务驱动” 转变“数据驱动”。
对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
Ⅲ 机器学习中的数据集合
机器学习中的数据集合
数据集分类
在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train set) 验证集(validation set) 测试集(test set)。
训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何。
Ripley, B.D(1996)在他的经典专著Pattern Recognition and Neural Networks中给出了这三个词的定义。
Training set:
A set of examples used for learning, which is to fit the parameters [i.e., weights] of the classifier.
Validation set:
A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.
Test set:
A set of examples used only to assess the performance [generalization] of a fully specified classifier.
显然,training set是用来训练模型或确定模型参数的,如ANN中权值等; validation set是用来做模型选择(model selection),即做模型的最终优化及确定的,如ANN的结构;而 test set则纯粹是为了测试已经训练好的模型的推广能力。当然,test set这并不能保证模型的正确性,他只是说相似的数据用此模型会得出相似的结果。但实际应用中,一般只将数据集分成两类,即training set 和test set,大多数文章并不涉及validation set。
选择训练集和测试集
其中一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取。样本少的时候,上面的划分就不合适了。常用的是留少部分做测试集。然后对其余N个样本采用K折交叉验证法。就是将样本打乱,然后均匀分成K份,轮流选择其中K-1份训练,剩余的一份做验证,计算预测误差平方和,最后把K次的预测误差平方和再做平均作为选择最优模型结构的依据。特别的K取N,就是留一法(leave one out)。
数据归一化问题
数据归一化属于数据的预处理。因为sigmoid函数根据不同的变换,输出在0到1或者-1到1之间,因此如果不做归一,就会出现样本输出超出神经网络输出的范围。选择最大的值max和最小值min,做如下变换
x=(x-min)/(max-min)
就是归一化。
需要注意的是max和min不应该直接选择为x中的最大值和最小值。原因是样本只是有限的观测,有可能还有更大或者更小的观测,因此合适的选择应该max选取xmax大一些和min比xmin小一些的。归一化并不总是合适的预处理,因为它不能使分布不对称的样本变得更对称一些,标准化要好一些。另外,有时候主成分分析也能起到降维的作用。
Ⅳ 大数据是干什么的 有什么用
关于复大数据,麦肯锡全球研究制所给出的定义是:
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
简单理解为:
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
大数据的核心作用是数据价值化,简单说就是大数据让数据产生各种“价值”,这个数据价值化的过程就是大数据要做的主要事情。
Ⅳ 什么是大数据,大数据可以做什么
大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据本身什么都做不了,能指望数据做什么呢。有大数据,如果不能通过数据
挖掘和数据分析得出对实际操作有价值的信息,那么它什么也做不了。
如果理解为对大数据的分析应用能做什么,那么它能做的事情就太多了,各个行业都会用到,物流、博彩、营销、客户管理、医疗、零售、环保等等都有其身影。
举例说明:
通过对客户进行分类整理,根据客户的购买习惯、年龄、喜好、地域等区分进行推荐产品,进行个性化的页面展示。还可以根据以往数据来进行动态营销。
零售,根据需求和库存的情况,适时调整价格
医疗,根据众多病人的特征,分析原因,量级太小的时候,这些特征根本不明显,不会得到重视,只有在大量数据中,才能发现平时注意不到的现象。
公共安全。根据以往犯罪数据预测发生犯罪事件的地区与概率。
娱乐。比如《纸牌屋》的制作公司根据以往的用户习惯,打造出大受欢迎的电视剧。
仅仅有大数据是远远不够的,更需要的是数据挖掘和数据分析的技能(包括大脑与软件操作),这样才能发挥出优势。如果愿意学习大数据的相关课程,有个“PPV课”的网站,课程很全面,可以学到很多关于大数据的知识,包括对案例的分析,还有软件操作等。
Ⅵ 什么是大数据大数据具体有什么用大数据到底能干什么
什么是大数据?
一句话快答:一是大数据是一个很大的海量的数据集;二是指版的新型处理权海量数据的技术体系。
大数据是一个抽象的概念,可以简单理解为"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
大数据有什么价值?
一句话快答:将海量数据价值化。
大数据的核心作用是数据价值化,简单地说就是大数据让数据产生各种“价值”,这个将数据价值化的过程就是大数据要做的主要事情。
大数据有哪些作用?
一句话快答:给人类提供辅助服务,为智能体提供决策服务。
大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合。具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。通俗地讲“大数据就像互联网+,可以应用在各行各业",如电信、金融、教育、医疗、军事、电子商务甚至政府决策等。
对企业而言,大数据可提高工作效率,降低企业成本,精准营销带来更多客户。
对政府而言,可以利用大数进行统筹分析、提高管理效率、管理抓获犯罪分子等。
对个人而言,可以利用大数据更了解自己等。加米谷大数据培训。
Ⅶ 数据库集群技术有哪些
数据库集群技术
1)提高数据库处理速度的技术
目前有四种提高数据库处理速度的办法:
◆ 提高磁盘速度:这包括RAID和其他磁盘文件分段的处理。主要的思想是提高磁盘的并发度(多个物理磁盘存放同一个文件)。尽管实现方法各不相同,但是它们最后的目的都是提供一个逻辑数据库的存储映象。我们要评价的六个系统都能有效地利用这些技术。由于ICX已经有最大的磁盘冗余度,RAID 磁盘系统的设置应该侧重于速度,而不是数据冗余。这样磁盘利用的效益就会提高。
◆ 分散数据的存放:主要思想是利用多个物理服务器来存放数据集的不同部分(一个数据库表格分散到多个服务器或者每个服务器分管几个内容不同的表格)。这些办法不但可以扩展数据集(数据集的可扩性),而且使得不同的服务器进行并行计算成为可能。例如,对于ORACLE的RAC来讲,由于它是共享磁盘的体系结构,你只需要简单地增加一个服务器节点,RAC就能自动地将这节点加入到它的集群服务中去。RAC会自动地将数据分配到这节点上,并且会将接下来的数据库访问自动分布到合适的物理服务器上,而不用修改应用程序。对于UDB来讲,因为它是非共享磁盘的体系结构,因此就必须手工修改数据的分区,MSCS和ASE也是同样的情况。MySQL也需要手工分区,并且是这几种数据库中支持分区的自动化程度最低的,也就是说,应用程序需要自己负责数据库的分布式访问。不管数据存放是如何实现的,分布式存放数据的缺点是对数据库的可用性有负面影响。任何一台服务器的损坏都会影响整个系统的可用性。但是,这是迄今为止各大数据库厂商能提供的业界最好的数据库集群技术了。ICX是一种基于中间件的数据库集群技术,它对客户端和数据库服务器都是透明的。因此,ICX可以用来集群几个数据库集群(一个逻辑数据库),也可以用于集群几个物理数据库服务器(来增强一个分管关键数据的物理服务器)。
◆ 对称多处理器系统:此技术的思想是利用多处理机硬件技术来提高数据库的处理速度。但是,除了ICX,所有其它的数据库集群技术只支持单一的可修改的逻辑数据库。绝大部分的数据库事务处理是磁盘密集型的,纯计算负荷很小的,对称多处器技术在数据库上的应用的实际收益是很有限的。这也说明了为什么实际应用中最多只用了四个CPU的原因。所有的基于数据库引擎的集群都支持这个技术,ICX对SMP技术是中性的,因为它能把多个数据库服务器集合在一起构成一个集群,也能将多个现存的数据库集群集合在一起,构成集群的集群。
◆ 交易处理负载均衡:此技术的思想是在保持数据集内容同步的前提下,将只读操作分布到多个独立的服务器上运行。因为绝大多数的数据库操作是浏览和查询,,如果我们能拥有多个内容同步的数据库服务器,交易负载均衡就具有最大的潜力(可以远远大于上面叙述的最多达四个处理器的对称多处理器系统)来提高数据库的处理速度,同时会具有非常高的数据可用性(真正达到5个9,即99.999%)。所有基于数据库引擎的集群系统都只支持一个逻辑数据库映象和一个逻辑或物理的备份。这个备份的主要目的是预防数据灾难。因此,备份里的数据只能通过复制机制来更新,应用程序是不能直接更新它的。利用备份数据进行交易负载均衡只适用于一些非常有限的应用,例如报表统计、数据挖掘以及其它非关键业务的应用。只有ICX能够做到同步复制多个数据库服务器从而达到在保持数据一直性前提下的真正的负载平衡。
上述所有技术在实际部署系统的时候可以混合使用以达到最佳效果。
2)提高数据库可用性的技术
根据物理法则,提高冗余度是提高数据库可用性的唯一途径。
提高数据库冗余度大致有四种方法:
◆ 硬件级的冗余:主要思想是让多处理机同时执行同样的任务用以屏蔽瞬时和永久的硬件错误。有两种具体的实现方法:构造特殊的冗余处理机和使用多个独立的数据库服务器。冗余处理机的造价昂贵,效益很低。实际应用日渐减少。基于数据库的集群系统都是用多个独立的数据库服务器来实现一个逻辑数据库,在任意瞬间,每台处理器运行的都是不同的任务。这种系统可以屏蔽单个或多个服务器的损坏,但是因为没有处理的冗余度,每次恢复的时间比较长,它们需要把被损坏的服务进程在不同的服务器上从新建立起来。ICX让多个独立的数据库服务器作同样的处理。发现处理器问题时的切换不需要重建进程的状态,所以故障屏蔽是极快的。
◆ 通讯链路级的冗余:冗余的通讯链路可以屏蔽瞬时和永久的通讯链路级的错误。基于数据库引擎的集群系统有两种结构:共享磁盘和独立磁盘。RAC, MSCS 和 MySQL CS可以认为是共享磁盘的集群系统。UDB和ASE 是独立磁盘的集群系统。共享磁盘集群系统对网络系统的要求很高,所以通讯的冗余度最小。独立磁盘集群系统可以把磁盘系统独立管理,通讯冗余度较高。 ICX的通讯链路级的冗余度最高,因为它使用的是多个独立的数据库服务器和独立的磁盘系统。 ICX也可以用于共享磁盘系统。 但是冗余度会相应降低。
◆ 软件级的冗余:由于现代操作系统和数据库引擎的高度并发性,由竞争条件、死锁、以及时间相关引发的错误占据了非正常停机服务的绝大多数原因。采用多个冗余的运行数据库进程能屏蔽瞬时和永久的软件错误。基于数据库引擎的集群系统都用多个处理器来实现一个逻辑数据库,它们只能提供部分软件冗余,因为每一瞬间每个处理器执行的都是不同的任务。只有ICX可以提供最大程度的软件级冗余。
◆ 数据冗余:有两类冗余数据集。
被动更新数据集:所有目前的数据复制技术(同步或异步),例如磁盘镜像(EMC的TimeFinder系列)、数据库文件复制(如DoubleTake, Veritas and Legato)以及数据库厂商自带的数据库备份工具都只能产生被动复制数据集。通常,为了实现复制功能,需要消耗掉主服务器5%(异步)到30%(同步)的处理能力。被动更新的数据一般只用于灾难恢复.被动更新数据集还有两个致命的问题:一旦主处理机故障造成数据损坏,被动更新的数据集也会被破坏。另外,和主动更新系统相比,被动更新系统对数据网络的带宽要求更高。这是因为它缺少交易的信息,很多数据复制是盲目的。
主动更新数据集:这种数据集需要一台(或多台)独立的备份数据库服务器来管理,由于这种数据集及时可用,它可以有多种用途,例如报表生成,数据挖掘,灾难恢复甚至低质量负载均衡。 同样地,这里也有同步和异步两种技术。
◆ 异步主动复制数据集:这种技术是先把事务处理交给主服务器来完成,然后这些事务处理再被串行地交给备份服务器以执行同样的操作来保证数据的一致性。这种技术生成的数据集和主数据集有一个时间差,所以仅适用于灾难恢复、数据挖掘、报表统计以及有限的在线应用。所有的商用数据库都支持异步主动复制技术。这种办法的难度在于复制队列的管理上,这个队列是用来屏蔽主服务器和备份服务器之间的速度差异的。因为主服务器可以尽可能地利用所有软硬件的并发性来处理并发的事务,而备份服务器只能串行地复制,在高负荷事务处理的情况下,复制队列经常可能溢出。因为没有任何办法来控制事务处理请求的速度,在高负荷事务处理的情况下,复制队列只能经常性地重建。因为所有现代数据库系统都支持热备份和LOG SHIPPING。通过精心策划,应该可以实现不关闭主服务器而重建队列。ICX也支持异步主动复制. ICX的复制队列的重建是通过ICX的自动数据同步软件来完成的,所以不需要人工操作。
◆ 同步主动复制数据集:这种技术要求所有的并发事务处理在所有的数据库服务器上同时完成。一个直接的好处就是没有了队列的管理问题,同时也可以通过负载均衡实现更高的性能和更高的可用性。这种技术也有两种完全不同的实现方法:完全串行化和动态串行化。完全串行化的事务处理来自于主数据库的事务处理引擎,RAC, UDB, MSCS (SQL Server 2005) 和 ASE是用完全串行化并结合两阶段提交协议来实现的,这种设计的目标就是为了获得一份可用于快速灾难恢复的数据集。这种系统有两个关键的问题。第一,两阶段提交协议是一种“ALL OR NOTHING”的协议。仔细研究两阶段提交协议后就能发现,为了获取这备份数据集,事务处理的可用性会降低一半。第二,完全串行化的做法又引进了主-从数据库服务器速度不匹配的问题。强制同步造成整个系统的速度被降低到完全串行化的水平。相反,ICX-UDS采用了动态串行复制引擎。这设计可以充分利用多个独立数据库的处理能力。ICX避免了使用两阶段提交协议,因此一个事务处理只有在集群中的所有服务器全都同时崩溃的情况下才会回滚。
为了防灾,必须使用远程网络。 所以我们在这里讨论远程数据复制的办法。这里大概有四种办法。
◆ 动态远程异步复制:这种办法是指主服务器通过远程网串行地把交易复制到备份服务器上。由于主-副之间的速度不匹配,队列管理的问题就很突出。 由于远程网的速度一般都比较慢,队列溢出的概率大大增加。所有的集群系统都支持这种复制办法,只是队列管理的办法不同而已。DM,FM和RAID都不能支持这种办法。RAID只能在局域网内工作。
◆ 动态远程同步复制.:这种办法是指主服务器通过远程网并行地把交易复制备份服务器上。只有ICX 具有这种能力。
◆ 静态远程异步复制.:这种办法是指通过远程网把数据串行地复制(不通过数据库服务器)到异地。DM和FM支持这种复制办法。因为串行处理和队列管理的关系,这对于处理量大的系统不适用。但是这种复制办法对应用是透明的,所有集群系统都可采用.
◆ 静态远程同步复制.:这种办法也是指通过远程网把数据串行地复制(不通过数据库服务器)到异地。不同的是,这里没有队列管理。取代队列管理的是发送端的一个新的协议:每次发送都要等接受端确认复制成功。否则回滚。DM和FM都支持这种复制办法。这种办法只能在短距离范围内工作, 大约5 英里光纤的样子。如果超出这个距离范围的话,显然事务处理回滚的概率就会很高。但是这种复制办法对应用是透明的,所有集群系统都可采用。
3)提高数据库安全和数据集可扩展的技术
在提高数据库安全性和数据集可扩性这两方面,可以创新的空间是很小的。数据库最常见的安全办法是口令保护,要么是分布式的,要么是集中式的。在数据库前面增加防火墙会增加额外的延迟,因此,尽管许多安全侵犯事件是来自于公司内部,但是数据库防火墙还是很少被采用。如果数据库集群技术是基于中间件技术实现的,就有可能在不增加额外延迟的情况下 ,在数据经过的路径上实现防火墙功能。ICX完全实现了这种思想。
数据库数据集的可扩性只能通过将数据分布到多个独立的物理服务器上来实现。为了弥补可用性的损失,ICX能被用来提高整个逻辑数据库或者部分重要服务器的处理速度,可用性和安全性。
Ⅷ 大数据可以做什么
现在大家可能都听说过大数据,大数据的出现使得各个行业的发现具有了方向性,为推动社会做出了巨大的贡献,大数据离不开数据挖掘,那么大家知道不知道大数据可以做什么呢?简单来说,大数据可以让预测未来。
一、大数据可以预测未来
简而言之,大数据和数据挖掘能够赋予我们预测能力。而现在我们的生活已经数字化了,我们每天所做的任何事情都可以通过大数据记录下来,就好比每张信用卡交易都是数字化和可查询的。对于企业来说,大多数财务和运营数据都保存在数据库中。而现在,随着可穿戴设备的兴起,大家的每一次心跳和呼吸都被数字化并保存为可用数据。使得机器了解我们。
二、如果模式保持不变,那么未来就不再是未来
现在,我们生活中的许多不同事物都有不同的表现形式。比如说,一个人可能在任何工作日内在工作和家庭之间旅行,在周末到某个地方游玩,这种模式很少改变。商店将拥有任何一天的高峰时段和闲置时间,这种模式不太可能改变。企业将在一年中的某些月份要求更高的劳动力投入,这种模式不太可能改变。
由此,计算机通过终端去进行搜集到这些数据,就去分析这些数据,然后对受众群体进行合理的安排。计算机也就能够知道什么时候是适合促销的最佳时间,例如,如果这个人每周五的星期五都要洗车,或者是优惠券,那就是洗车促销如果这个人每年三月都要去度假,那就可以进行全方位的服务。同时计算机还可以预测商店全天的销售预测,然后制定业务战略以最大化总收入。一旦未来变得可预测,我们可以随时提前计划并为可能的最佳行动做好准备。这就说明了大数据给了我们预测未来的力量。这是数据挖掘的力量。数据挖掘始终与大数据联系在一起,因为大数据支持大量数据集,从而为所有预测提供了基础。
三、机器学习是什么?
刚才我们根据一块数据的处理方式进行了分析。假设这条数据包含一组购物者的购买行为,包括购买的商品总数,每个购物者购买的商品数量。这是迄今为止最简单的统计分析。如果我们的目标是分析不同类型的购物者之间的联系,或者如果我们想要推测特定类型的购物者的特殊偏好,或者甚至预测任何购物者的性别或年龄,我们将需要更多复杂的模型,通过录入的数据,我们称之为算法。机器学习可以更容易理解为为数据挖掘目的而开发的所有不同类型的算法,方便我们的生活。
四、数据挖掘是什么?
通过计算机去学习算法,用现有数据去预测未知数,这正是数据挖掘的奇迹与机器学习密切相关的原因。然而,任何机器学习算法的强度在很大程度上取决于大量数据集的供应。无论算法有多复杂,都不能从几行数据中做出预测,需要大量的数据作为样本。大数据技术是机器学习的前提,通过计算机的学习,我们能够从现有数据集中获得有价值的见解,这就是数据挖掘。
以上的内容就是对于大数据可以做什么?这两个问题的具体的解释了,大数据的出现能够让我们更好的预测未来,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。