① 简述轨道检查仪的种类,检测项目和用途
FTGZ-6A轨道检查仪要用于对轨道的轨距、水平(或超高)、左右轨向及正矢、左右高低及三角坑等几何参数的检测,具有以下特点:1、自带工业计算机(数据采集仪)用于记录并分析数据,同时将测量的真实结果实时显示出来;所有项目现场超限报警功能可立即让检测者标记处大病害的处所;2、可人机对话,用于记录线路的特征点、道口、站台、固定螺栓脱落、断轨等标记或病害;3、可通过专配智能型数据分析处理软件对检测数据进行进一步的分析,中煤为线路的维护提供科学依据;4、采用“T”型结构,由专用铝合金型材构成,强度高、重量轻;5、采用辅助传感系统,消除了轨距和水平测量的zmjt059原理性误差;6、具有大容量内置存贮器,并可通过U盘实现数据转存;7、系统一次充电可连续工作16小时以上;8、适应野外作业,具备防雨功能;9、具有实时超限报警等功能,超限处所信息无线发送功能,并按照超限划分等级。② 铁路工务技师技术论文
铁路工务技术的主要目的就是维护和提高线路的质量,铁路线路施工的安全、质量直接关系着铁路运输工作的安全,我整理了铁路工务技师技术论文,欢迎阅读!
铁路工务管理与现状分析
摘要:对国内外铁路工务管理信息系统的应用现状进行了概述总结,分析了我国现有铁路工务管理新形势和铁路工务面临趋势,并对我国铁路工务管理进行了展望。
关键词:铁路 工务 形势 管理信息
中图分类号:F230 文献标识码:A 文章编号:1674-098X(2013)02(a)-0219-01
基于个人在铁路工务工作中的体会,在此梳理T我国铁路工务管理及形势,概述如下:时值中国铁路大发展。铁路工务设备是铁路的基础设施,直接影响到铁路运输的安全与效率。对铁路工务设施的有效管理,一直是国内外铁路工作者的研究重点。根据面临的严峻形势,今后工务工作的重点是:不断优化生产组织,夯实安全基础,保障提速线路的安全运营,实现其安全、高速、可靠性,以高标准、讲科学的态度抓好提速线路的养修管理,确保提速安全;实现线路质量均衡提高,全面提升安全保障能力;培养提速线路养修高技能人才'为铁路持续发展增添后劲。
1 铁路工务工作面临新形势
六次大面积提速调图的成功实施和时速350 km2城际铁路成功开通运营,以及多条时速200 km2及以上客运专线的成功开通运营,标志着我国迎来新一轮大规模的高速铁路建设高潮。在运输条件和铁路建设发生重大变化的情况下,铁路工务工作面临更复杂的形势和更高的要求。
1.1 高速、重载同步发展
重载铁路列车轴重大,对基础设施的破坏剧烈,其结构要求具有较高的强度和可维修性:高速铁路速度密度大,要求基础设施有很高的平顺性,其结构要求具有高可靠度,修理工作应尽量少。
1.2 有砟、无砟轨道并存
我国铁路既有线的轨道基本上都是有砟轨道,客运专线、高速铁路、城际铁路以无砟轨道为主,时速200 km客运专线以有砟轨道为主。工务部门既要应对有砟轨道的问题,又要解决无砟轨道的问题。
1.3 改革、建设同时进行
在新的形势下,管理模式的变化不可避免,而管理模式的变化对工务工作必然会带来巨大变化。无论是设备管理、技术管理、施工作业等各个方面都会带来深刻变化。
1.4 提高自主创新能力
提高自主创新能力、加快技术进步是工务管理关键环节。工务部门在观念、技术、管理等方面都面临创新的问题。
1.5 外部环境压力增大
列车速度提高、货车轴重加大、行车密度增加等都给工务工作带来了新难题。
2 我国铁路工务趋势
在铁路建设发生重大变化的形势下,我国铁路工务正展现出如下趋势。
2.1 铁路工务线桥结构现代化
近年来,铁道部大力实施轨道结构重型化,在换铺钢轨过程中,加大技术含量,基本实现主要干线铺设每米60 kg钢轨轨道结构,特别是跨区间和整区间无缝线路的铺设有了大幅度的增加。在进行线路换轨大修的同时,坚持条件匹配,结构等强的原则,重视大修配套工作,大力完成成段更换混凝土轨枕工作,增加轨枕配置,更换不符规定的道岔,铺设钢筋混凝土轨枕或使用各种新型轨下基础,提高了轨道结构的强度。
在路基病害整治中,十分重视新技术、新工艺的采用,改善碎石道床及路基工作条件,在桥梁大修中,积极采用钢梁新型涂装体系,桥上K型分开式扣件,新型钢纤维混凝土桥面防水层等新技术、新材料,提高了桥梁结构强度。通过线桥设备大修,线桥结构现代化取得了长足进展。
2.2 铁路养路机械新水平
随着我国铁路建设和大面积提速工程的实施,有力推动了大型养路机械的发展。采用高效、大型的养路机械开“天窗”进行线路作业,这既是解决我国运输繁忙线路维修作业的有效手段,也是现代化铁路线路维修发展的方向。所采用的新设备、新办法,对提高线路质量、保证运输安全和扩能具有保障作用。我国大型养路机械已形成一定规模,主型机械齐全,附属设备配套,不仅装备有捣固、清筛、动力稳定、配砟整形等机型,还装备有钢轨打磨车、道岔打磨车、道岔捣固车、大修列车、道岔铺换设备等新型机械。全路采用大型养路机械进行线路的大型维修作业。装备规模的扩大,极大地提高了大型养路机械的作业能力,保证了线路大修、维修工作的正常需要,在灾害抢险中尽快开通线路发挥重要作用,使新建线路提高开通速度成为可能,在全路五次大提速工程中,顺利完成了线路改线、调整超高等大量工程任务,线路达到目标速度得以实现等等。
2.3 铁路工务安全生产管理信息化
随着路网干线提速及高速、重载铁路的发展,路网维护已经成为运输生产组织、行车安全中的关键问题。以信息技术为手段,利用轨检车、动检车,车载式线路检查仪、添乘仪、探伤车等动态检测数据和轨检仪、线路精测、人工检测等静态检测数据,综合列车密度、载重、速度等多种影响轨道恶化因素,通过综合统计分析,找出线路质量变化趋势,探索轨道状态变化规律,辅助制定维修计划,落实“零误差”和“精检细修”维修历年,逐步实现铁路工务安全生产管理信息化已成为当前的一个重要目标。实现铁路工务安全生产管理信息化有助于工务部门落实“零误差”维修理念,有利于科学指导维修作业,及时消除故障隐患,确保线路质量良好、安全可靠,促进工务管理水平的提升,为铁路固定设备安全保障体系提供技术支撑,达到工务决策科学化、全面提升工务管理水平。
3 结语
在列车长时间运行和自然条件作用下,铁路线路会不可避免地发生变形或损坏。为了确保列车安全、平稳、快速运行,延长线路各组成部分的使用寿命,必须加强线路的养护和维修工作,使线路设备经常保持良好状态。工务部门的基本任务是铁路运输组织体系中的基础性的工作,成为确保运输安全、运输效率、运输服务的前提。为此,工务设备必须围绕运输发展的需要,依靠科技进步,实现线桥结构现代化,施工作业机械化,企业管理科学化,使工务设备逐步由限制型向适应型过渡,以达到最有利的综合技术经济效果。为了适应外部环境的变化和运输条件的要求,近年来工务部门的工作也在发生着深刻变化。对工务管理的变革不仅成为巨大的压力,同时也是促成工务管理进步的强大动力。
参考文献
[1]张金龙,王瑞么.南昌铁路局工务管理信息系统的研究开发[J].铁路计算机应用,2001(8).
[2]史柏生.上海局工务管理信息系统研究[J].上海铁道科技,1999(2).
点击下页还有更多>>>铁路工务技师技术论文
③ 求铁路曲线绳正法拨道量计算程序软件
应用软件计算曲线拨量过程详解一般的讲,计算一条曲线拨道量的过程大致是:输入现场正矢→计算拨道量→查看是否合适→确定拨量合理→确定采用→输出这样一个过程。现以下面数据为例,说明应用本软件计算曲线拨量的详细过程,希望对您有所帮助。算例:已知各测点现场正矢如下表,其它要素不知道。试计算之。首先,运行软件进入开始画面,输入原始口令“000000”后,到了程序的主画面如下:第一步,把现场正矢数据填到“现场正矢.xls”文件内。现场正矢.xls 文件位于安装目录下,如,我是把软件安装在C盘的Program Filesr内(C:\Program Files\曲线整正)。里面的文件如下图。方法1:直接到这个目录下,打开这个文件输入;方法2:在程序内点击【文件】--【打开或创建现场正矢文件】输入,如下图:方法3:在程序内点击【计算】--【输入现场正矢】输入。现场正矢.xls文件的格式、表名等不能变动,只许向里填数,现场正矢填写完毕后存盘退出Excel。里面内容如下图:第二步,输入已知条件,选择计算方式如下图:这时,要做的是先要确定计算方式!即你所要计算的曲线是按哪种方式计算,从图中可看出,共有四种方式,分别是:1、按三无曲线计算;2、按给出的半径来计算;3、按一头整桩一头零桩计算;4、按已知桩位计算。其中第四种还分为是不是属于单圆曲线的类型。当选择不同的计算方式时,上面既出现相关的帮助说明,在这里不详叙了。为了得到合理的拨量,一般情况下,不管是否已知各项曲线要素,请首先按三无曲线计算,这样可以大概的知道以目前的现场正矢应该采用的半径、缓和曲线长度,即,首先有一个定位,之后再按已知半径进行计算,按已短半径计算时,要反复输入相近的数值试算,找到合理的拨量。选择相应的计算方式后,需先填上相应的已知条件:1、选择按三无曲线计算时,如上图,所有的要素不用填了,只需要填好测点间距即可。(测点间距不只10米一种是本软件的一大特点,本程序设计时允许以10米、5米、4米和3米四种测点间距来测设曲线,从而满足不同的要求,适应新形势。)2、选择按给出半径计算时,需要填上曲线半径、始端缓和曲线长、终端缓和曲线长和测点间距,如下图:3、选择按一头整桩计算时,需要填的已知条件是6项,如下图:4、按已知桩位计算时,需要填的已知条件在右面共有6项或4项内容,如下面两幅图:⑴ 有缓和曲线:⑵ 无缓和曲线:当已知条件输入完毕,现场正矢也填好后,请选择“已经填好”,按下[确定],相应提示选择后,结束输入过程。第三步,计算曲线拨量。在本例中,我们第一次让它按三无曲线来计算,让程序自动判别半径和缓和曲线长,结果出现下面的提示:看到半径是391.5911,缓和曲线1是40米,缓和曲线2是70米,进一步下拉,发现最后一点的闭合差是111,程序不能自动消除这样一个正的闭合差,说明这样的半径和缓和曲线长度是不合理的,按下【中止】按钮,再在“输入现场正矢”下重新按给出半径进行计算,这回,我们在半径处输入391,两个缓和曲线长都输入相等的数值50,选择“已经填好”,如图:按下【确定】按钮,再次进行计算曲线拨量,此时,什么提示也没有了,直接出现了下面的画面:说明我们以391米半径、两端50米的缓和曲线要素是基本合理的,选择不再修正选项,按下【确定】,如下图:选择【否】按下,进一步观察拨量情况,看到最大的拨量是-340,、且负拨量较大,说明半径选择稍大,应改小半径继续寻找较好的拨量。按下【中止】,重新输入比391小的数值看看(绳正法本身就是一种试算性质的,又称之为流水拨道法)。本次半径输入388,缓和曲线长不变,结果如下图:最大拨量是+202,且正负拨量大体相当,可以采纳。如果满意,可以直接选择不再修正—【确定】即结束计算过程。不满意,可以重新以新的曲线半径和缓和曲线长再计算,也可以在这里进行手工修正操作。修正的方法是:首先确定以ZH到HZ为修正范围(3点之前和34点之后为直线范围,不能安排修正),计算34-2=32个点,最大正拨量202在第21点,前面最大负拨量-188在第16点,这样,第一组要安排一个正数组,为的是减小第16点的拨量,第二组要安排一个尽量大的负数组,从而减少第21点的拨量,最后用一个正的数组来抵消。即初步计划是三个数组,正、负、正。初分一组和三组各10个点,中间12个点,因为二个相邻数组不同号时可以共用一个“0”,所以,中间的负数组再加2个点,到14个点,计算:一组10/25,S1=4×5=20;二组,14个点,14/2=7,S2=6×7=-42;三组,10/2=5,S1=4×5=20;20-42+20=-2,这-2在第二次修正的时候消掉,如图,在最后的32点和33点各填入1,使闭合差等于0。下面是对此结果进行手工修正的图。通过修正,最大拨量由202减小到170,第16点的最大负拨量-188减到-168。且拨后正矢满足以下5个条件:⑴ 缓和曲线正矢与计算正矢的差不超过1mm;⑵ 圆曲线正矢连续差不超过1mm;⑶ 圆曲线正矢最大最小差不超过2mm;⑷ 有控制点限制的,控制点拨量不超过许可范围。⑸ 最后一点拨量是零。程序提示通过,如下图。按下【是】,结束计算过程,回到主菜单。第四步,输出结果。在输出之前,请在前面的图内,把起点里程和曲线编号填好(在已知起点里程或实际测得某一点里程之后,换算一下,填入下面所示的栏内,具体里程要精确到厘米,“№”为曲线编号,用于输出拨量文件的编号。在主图下,按下【输出】菜单,依次点击这四个子菜单,即可输出计算结果来。计算成果是以Word文档形式存于当前目录下,用户可选择打印出表,或操作Word文档直接传真到工区,或者用铁路内网发到工区,也可以在程序内选择【文件】菜单,【打开拨道量计算结果文件】子菜单直接查看。缓和曲线检查表共设计了三个,一是用10米弦检查,二是用5米弦线检查,三是用2米弦线检查。这些表完全可以代替缓和曲线量副矢的做法,且比副矢好计算,来的快,点又密。而且从曲线头或曲线尾的桩开始的,都是整桩测量,结合超高和轨距递减一同写在轨枕上,方便检查。以下是我以前写的《零桩变整桩 检查曲线正矢》,用它来理解缓和曲线检查表的意义吧。零桩变整桩 检查曲线正矢在长期的工作实践中,我们现场一线的养路工创造了好多实用方法,如:将曲线尾的零桩变为整桩来检查曲线是否圆顺就是其中之一,现在我把它叙述一遍。如下图:HZ桩在第28~29测点之间,Hz桩距29点是4米,即HZ=28,60,由于是零桩,第28点和29点的正矢计算很麻烦,当时也没有这么先进,计算曲线必须查系数表,连计算器都没有,在现场怎么办呢?既然28点和29点的正矢不好算,我就不量你!从第29点退回4米,找到HZ点(我且命名为29’ 下同),从HZ点向直线方向量10米,找到第30’点,之后再从HZ点向曲中方向每10米做出标记,直到YH点+1结束。如测量图中的29’点正矢,就变成整桩的情形,计划正矢应该是六分之一的递增量,现场立马就能算出,以此类推,第28’点的正矢就是1个递增量,27’的正矢就是2个递增量……,因为缓和曲线都是10米的整倍数,到YH桩的时候也是整桩,而且这点的正矢是圆曲线正矢再减去曲线头的正矢,好算极了。④ 铁路动检车、轨检车区别
根据检测数据的不同,分别以轨道几何尺寸检测和动力学指标检测分类进行讲解。一、 动力学检测标准在动检综合车检测提供的7个报告中,第一个报告为综合检测车轨道几何状态检测报表、第二个报告为综合检测车动力学检测报表。这两个报表是考核我们的主要技术指标。我针对动力学检测报表中的一些专业术语进行一下分解。列车脱轨是影响行车安全的重要因素。在分析脱轨事故时往往会遇到下述情况:列车经过很长线路的运行均未脱轨,而恰在某处线路脱轨,说明该线路可能有问题。但时该处线路通过了许多列车均未发生脱轨事故,唯独该趟列车脱轨,又可能说明该趟列车有问题。上述事实说明,列车脱轨事故的产生是影响脱轨的各种不利因素综合作用的结果。同时也表明,某一行业设备的完善与工作的改进,会补偿其它行业设备的不足和工作的缺陷,避免脱轨事故的发生。绝大多数列车脱轨事故抣由车辆脱轨引起,因此,在进行列车脱轨分析时,将集中研究车辆的受力情况、脱轨原因和机理,以及应采取的预防措施。动检综合车所进行的动力学检测指标,主要是围绕此工作而开展的工作。(一) 脱轨系数(Q/P)轨道随着垂直、横向和纵向三个方面的荷载。纵向荷载主要由温度力、列车牵引力与制动力组成。1、 垂向轮轨作用力主要由下述两个部分组成。⑴垂直动力荷载。在进行脱轨分析时,轨道上承受的垂直动力荷载应只考虑速度的影响,通常按下式计算垂向动荷载Pd=Pj(1+α)Pd-动轮载Pj-静轮载α-速度系数。各国速度系数者根据大量试验资料与运营经验确定的。⑵偏载。列车在运行时各种因素引起的偏载。曲线上未被平衡的过超高、欠超高,货物装载偏心引起的轨道偏载。2、轨道承受的横向作用力Q纳达奥(Nadal)于1908提出的“单个车轮的最大横向力Q与垂直力P的比值Q/P作为衡量车轮轮缘爬轨引起脱轨的程度”论点,纳达奥(Nadal)方程是由轮轨接触点上力平衡关系推导出来的。如果法向力和切向力2个分力的合力能支撑起车轮的垂直载荷,则有可能引起脱轨。研究结果表明,脱轨系数Q/P除受轮轨接触角、摩擦系数影响外,还受到冲角的影响。这起因于轮轨间横向和纵向蠕滑力的饱和特性:在有纵向切线力作用时,由于纵向的滑动,接触面内的蠕滑力基本饱和,横向蠕滑力变小,Q/P的限度值变大。这可以用来作为解释机车不易脱轨的理由。车轮爬轨时的脱轨系数Q/P值,随着车轮轮缘的爬起,轮轴侧滚角的增大,逐渐加大,达到极大值后,又随轮缘前端接触角减小的影响而逐渐减小。在接触角减小的范围内,轮缘失去了其防止脱轨的功能,所以,从车轮轮缘爬轨开始到极大值之前来评定防脱轨性能是有效的。3、脱轨系数限界值车轮脱轨系数与横向力作用时间t有关。当t≥0.05 s时,被认为是车轮轮缘爬轨引起的脱轨,其限界值为0.8;当t<0.05 s时,被认为是车轮轮缘冲击钢轨引起的脱轨,脱轨系数限界值应满足以下条件:(Q/P)max≤0.04/t随着列车的高速化,钢轨表面的波浪磨耗造成了轮重的高频变动。这种现象在发生地点造成了短时间大的轮重减载,以致出现了较大的脱轨系数,但车轮的悬浮量很少(根据理论计算,不超过1 mm),并无脱轨危险。在这种情况下,用脱轨系数的作用时间来评定防脱轨性能,通过理论计算,以15 ms作为限界值。脱轨系数作用时间在50 km/h~200 km/h速度范围内随着速度的增加而减少,200 km/h以上则基本不变,但随着载荷(轮重)的增加而减少。脱轨系数Q/P的界限值TB/T 2360-93 优良 良好 合格 不合格(Q/P)max 0.6 0.8 0.9 1.2当超过上述合格值时,尚需看超过段的持续时间和峰值大小再作判定。事实上国内外的试验表明,即使限定脱轨系数1.2也是比较保守的,在许多情况下大于1.2时也并未导致脱轨,这主要是因为是否脱轨还与轮轨冲击作用力的持续时间长短有关。也就是说脱轨通常需要一个过程,即轮轨冲击力作用时间需要一个持续的过程,否则即使超过限值也不会导致脱轨。(二) 轮重减载率(△P/P)我先解释一下轮重减载率,轮重减率是衡量车轮是否因一侧车轮减载过大而脱轨的指标。对于车轮防脱轨性能来讲,只研究脱轨系数还不够,这是因为有的时候,轮重P较小,如果这时横向力Q也小,受到横向力测量误差的影响就大,这样求得的脱轨系数就不能很好地反映车轮防脱轨性能。实际上,由于这时轮重较小,冲角稍许变化就会产生较大的横向力,潜在着脱轨危险。因此,必须对轮重的减载量予以限制,这就是评定防脱轨性能的另一项重要指标——轮重减载率ΔP/P (式中,ΔP为轮重的减载量,P为左右平均静轮重)。脱轨系数由纳达奥(Nadal)公式求得,只考虑在脱轨车轮上力的平衡即可,但轮重减载率就必须考虑一个轮对的左右两个车轮力的平衡。根据理论计算结果,轮重减载率也是冲角的函数。1、准静态轮重减载率用于评价在缓和曲线上轨道扭曲,圆曲线上超高不足或过剩等场合车轮较长时间产生的轮重减载,减载率不得大于0.6。2、动态轮重减载率由于轮对上作用着横向力,有必要对轮重减载率加以限制。但是,从实际运行试验的测量结果来看,轮缘接触钢轨时产生横向力的车轮,其轮重也会加大,相反,轮重减少的车轮,轮缘一般不贴靠钢轨;此外,通过钢轨接头等场合产生冲击引起的轮重减载率,由于时间很短,不会有脱轨危险。根据这样的观点,限界值规定不得大于0.8(日本)或0.9(美国),即瞬间动态轮重最小值不小于静轮重的0.2或0.1倍。由轮重和轴箱振动加速度波形判断,超过上述限度值的时间约在0.01 s以下,不会影响安全。我国规定的轮重减载率静轮重第一限度为≤0.65,第二限度为≤0.60,动态下轮重减载率为0.8。3、造成车轮减载的主要因素有以下四个方面(1) 车辆货物偏心装载(2) 车体或转向架刚性过大(3) 线路存在严重高低和方向不平顺,会使车辆上下振动与摇晃,使车轮减载。(4) 当转向架驶出圆曲线进入缓和曲线时,在圆缓点附近,转向架前轴外轮将浮起,造成外轮减载。(三) 轮轴横向力(kN)对由轮对作用于线路的最大横向力加以限制是为了降低因横向力引起护板移动所造成的危险。H≤15+(P1+P2)/3其中P1为冲击荷载,P2为准静态荷载。(四) 横向平稳性和垂向平稳性这一指标主要是衡量车辆稳定性的指标,其超限值为2.5(大约)。这一指标与我们关系不大,其不是线路状态的反应。二、 轨道几何尺寸的检测项目除了以上动力学检测指标外,对于轨道几何尺寸的检测,部Z字头车所挂的V型车和动检综合车加挂的IV型车,检查项目基本类同。除了动检车对轨距和轨向不进行检测外,其它检测指标全相同。下面我先将大家熟悉的这些检测指标简单再介绍一下。(一)检测指标名词解释1、轨距 轨道上两股钢轨头部内侧轨顶面下16mm范围内的最短距离称为轨距。世界各国铁路采用不同的轨距有多种。我国习惯称1435mm为标准轨距,大于1435mm为宽轨,小于1435mm为窄轨。2、轨向不平顺 指轨道上钢轨工作边沿线路纵向的不平顺,即直线不直、曲线不圆。它主要表现为钢轨硬弯和轨向积累残余变形。3、高低不平顺 经过一段时间列车运行后,由于路基状态、捣固坚实程度,扣件松紧、枕木腐朽和钢轨磨耗的不同,就会产生不均匀下沉,造成轨面高低不平。轨道纵向的不平顺情况称为高低或称前后高低不平顺。4、三角坑 指在规定距离内两股钢轨交替出现的水平差超过规定值的线路病害。5、水平 指轨道上左右两股钢轨面的水平状态。在直线地段,钢轨顶面应保持同一水平,在曲线地段,应满足外轨设置超高的要求。6、车体振动加速度 其分横向振动加速度和垂直振动加速度,其是机车车辆对力道几何偏差的动力响应,也是对机车车辆运行的平稳性测量。7、舒适度标准舒适度标准只是针对时速200km以上区段的考核指标,在这个标准中,它对70m高低、轨向进行了考核,同时对轨距变化率、曲率变化率和横加变化率进行了考核。所谓的70m高低、轨向不平顺,是指在波长1.5m-70m范围内进行的检测,其不同于原高低和轨向的主要区别在于检测波长的不同,原标准中的检测波长为1.5m-42m,除了波长不同外,其他含意完全同原意。对于轨距变化率、曲率变化率和横加变化率三率的理解,从字面上大家也可以完全理解这些概念,其主要是一个单位时间内轨距、曲率和横向振动加速度变化量的一个考核指标。⑤ 高速铁路静态平顺性指标有哪些
高速铁路轨道平顺性数据分析和优化
不平顺引起轮轨动力响应,
是轮轨动力作用增大的主要因素。影响平稳和乘车舒适性、
威胁行车安全。
不平顺直接限制行车速度(速度越高不平顺影响越大)
。
轨道平顺性的分析难点就在于分析判断数据的真实性。
无咋轨道系统的轨道平顺性主要依赖于精调轨道板或轨枕的精确就位,但由于轨道板或轨枕精调过程
中的出现的偏差、以及两题的收缩徐变、轨道铺设焊接的误差、轨道扣件系统误差等因素影响,铺轨后的
轨道平顺性很难完全达到要求,必须进行必要的轨道调整使其平顺性指标满足要求。
2
规范平顺性要求:
轨向:
2mm
,高低:
2mm
,
(
10m
弦长)
30m
弦
5m
步距。
轨距:±1mm,三角坑(扭曲)
:±2mm(基长
3m
)
。
水平(超高)
:±2mm。
平顺性指标的物理意义:采用
30m
弦长(
48
个轨枕)测量,检测间隔
5m
的相邻检验点的实际矢高差
与设计的矢高差的差值不超过
2mm
;长波是
300m
弦,间隔
150m
。
轨道的几何形位是指轨道各部分的几何形状,
基本尺寸及相对位置。
直线轨道几何形位的基本要素有:
轨距、水平、高低、方向、轨底坡。几何形位正确与否直接影响行车的安全和车辆的舒适程度,以及设备
的使用寿命和养护与维修的费用。
轨距是钢轨顶面下
16mm
范围内两股钢轨作用边之间的最小距离。
水平是指线路左右两股钢轨顶面的相
对高差。三角坑是指在延长不足一定基长的距离内出现水平差超过一定值的三角坑。轨距和水平的测量,
一般静态用道尺和轨道检查仪进行测量,动态的测量一般都是用轨检车进行测量。轨道的高低是指轨道的
纵向不平顺。高低产生的原因:
a.
道床的积累变形。
b.
路基的不均匀沉陷。
c.
钢轨磨耗、焊缝、轨面擦
伤。
d.
轨枕失效、弹性不均匀。
e.
空吊板:轨底与铁垫板或轨枕之间存在间隙(间隙超过
2mm
是称为吊
板)
。
f.
轨道或基础刚度不一致。高低的测量:一米长的轨道不平顺仪。
10
米(
20
米、
40
米)弦。轨检
车或轨道不平顺检测小车。轨道的方向(轨向)是指轨道中心线在水平面上的平顺性。方向的测量主要用
10
米(
20
米、
40
米
)
弦来测量。
3
调整原理、步骤
轨道方向及轨距调整通过更换轨距挡板进行调整,高程、高低、水平通过更换轨垫来进行调整。标准
挡板规格左右都为“wfp15a”调整步距为
1mm
,可调范围为“
-8mm
到
8mm”。高程通过更换轨垫调整,标
准轨垫厚度(规格)为
6mm
。调整步距为
1mm
,可调范围为“
-4mm
到
2mm”。举例:轨道向右调整
2mm
,钢
轨右侧挡板规格更换为“wfp15a
-
2”、
左侧更换为“wfp15a
2”。
轨道调高
2mm
,
该处轨垫规格更换为
8mm
。
轨道调整前必须先确定发生偏差的具体轨枕位置、方向、大小,确定扣件更换规格。调整步骤:轨道
测量(测量承轨台或钢轨)→计算分析轨道平顺性→对超限点进行模拟调整→根据模拟的调整方案更换扣
件调整→复测验证。
4
根据轨检小车测量数据进行调整
轨道铺设后利用轨检小车测量轨道几何,根据偏差分析轨向、高低等指标,发现超限根据几何图形进
行模拟调整,保证平顺指标满足要求。
调整量分析必须在测量数据可靠的前提下进行。我觉得进行数据分析的话,最好对所要分析的那一段
轨道进行
2
遍的轨检小车的数据采集,这样的话分析起来数据的话可以对
2
次采集的数据进行对比分析可
以排除一些测量上的误差。
注意事项:
a.
根据图形判断超限是否是由于测量误差引起的。
b.
现场测量需
保证搭接精度在
1mm
之内。
c.
现场测量时建议将全站仪尽量架设在相对稳定处。
d.
定期利用道尺对小车
测量数据进行复核。防止产生系统误差,特别是对数据怀疑时。
数据的分析难点就在于分析和判断数据的真实性。解决这一难题就要进行多次测量和现场核对。我个
人感觉对数据进行
2
次的采集狠有必要,这样可以减少测量的误差,使数据更真实更加具有参考价值。
⑥ 为什么美国铁路不像中国和欧洲那样大面积电气化
上面的第一个满意回答是错误的!美国不大规模建设电气化铁路的原因很简单,就是电气化铁路在美国不实用,所以不采用!我试着分析原因如下:
1.美国的铁路以货运业务为主,货物中有很大一部分是来往于东西海岸之间的集装箱。目前美国铁路货车轴重普遍为30t集装箱装一层太轻划不来,必须采用双层运输方式。可两层AAA的箱子用专用平车装好后高度还是过高,现有电气化铁路的界限满足不了要求(中国的双层集装箱专用车只能装一层AA箱和AAA层箱,如果一条船下来的全是AAA换装到火车上只能装一层了)。
2.铁路的电气化改造项目建设投资也是很高的,除了接触网、牵引变电所、还有给接触网供电的馈线、给牵引变电所供电的高压输电线路这些供电设施外。为了提高信号系统的抵抗牵引电流干扰也要相应改造,满足不了界限要求的桥梁隧道的改建等等……牵一发而动全身。
3.美国没有天朝如此高的油价,内燃机车性价比没有我们低。但电气化铁路接触网等供电设施维护费在美国价格会让铁路公司的经营者们无法接受。现代铁路养护技术可以做到铁路本身平时不去维护,隔段时间用轨检车跑跑采集到不良处信息经分析后到时候再安排集中维修。可接触网就不行了,需要利用铁路运行图“天窗”时间经常调整才能保证处于良好的工作状态。国内电气化铁路二三十公里就得设置一个接触网工区来维护接触网。天朝劳动力价格便宜还行,试想想美国铁路公司的老板得雇多少高鼻子蓝眼睛的网工在连接东西海岸的干线铁路无人区常时间工作,那得付多少薪水啊!还得解决这些人在无人区生活不便的问题……
4.在美国你看到一列挂着七八台甚至十来台内燃机车的货物列车,但实际同时用来牵引的就两三台,其它机车都是备用的,因为这种列车大都是横跨大陆来往于东西海岸的直达货物列车,中途不停车换挂机车,可是每台机车油箱容量又有限就只好多挂几台了。
另外需要说明的是美国干线货运铁路质量非常好,轨距和我们是一样的1435mm准轨。中国的火车(动车除外)在上面跑绝对不成问题,但反过来直接把美国的火车开到中国来非把我们的铁路压坏不可!
美国的客运铁路也有连接大城市的电气化铁路,但没用横跨东西海岸的。这一切都是经济规则决定的,结合国内情况用最少的投资换取最大的利润!换句话说就是金钱决定了用什么科技。
⑦ 轨道检查车的发展沿革
早期轨道状态采用人工检测,19世纪70年代出现了轨道检查小车。用人力推行小车和机动的检测小车进行检测。用这些方法检查不能反映轨道在列车车轮荷载作用下的几何状态。
因此在19世纪70~80年代,欧洲有些国家开始研究在普通客车上装备检测设备,并出现了一些雏型的轨道检查车。20世纪初,俄国、德国和美国铁路正式使用轴重较大的客重式机械轨检车,检测在轮载作用下的轨道几何状态,开创了轨道动态检测新阶段。
机械轨检车是借助检测车轮、重铊、杠杆、滑轮、弹簧等机件,由钢丝绳直接牵动绘图笔在纸带上记录检测的结果。这种轨检车的检测速度低,误差大。
20世纪50年代末,苏、日等国制成电气轨道检查车。此后各种电测装置逐渐取代了机械检测系统。
70年代以前的轨检车,都用弦测法和接触检测小轮来测量轨道的不平顺状况。弦测法的测量值随测量弦的长度与轨道不平顺波长的比值变化,测得的高低等波形,往往与实际轨道不平顺情况有较大的差异。接触检测小轮在高速时,因惰性等影响,误差较大。
近十多年来,由于行车速度提高,运量增大,需进一步提高轨道的不平顺性,要求更准确地测出轨道不平顺波形,因而促进了轨道检测新技术的发展。70年代前期,美、英、日等国相继采用惯性基准、无接触检测等先进技术,研制成功用电子计算机自动处理检测数据、能如实地反映轨道状态、检测速度达每小时200公里的现代化高速电子轨道检查车。
近年来,各国使用的现代轨道检查车由检测和数据处理系统(图1)、 发电供电系统、空气调节系统、仪表工作室、了望台以及走行转向架等几部分组成。
其检测项目有轨道的高低、水平、三角坑、方向、轨距,以及里程和行车速度等。有的还能测量曲线超高、曲率,以及高低方向等轨道不平顺的变化率、曲线通过的均衡速度等。
还有些现代轨检车通过测量车体和轴箱的振动加速度、轮轨作用噪声,以及轮轨间的垂直力、水平力、脱轨系数等,为更全面地评价轨道的状态提供依据。现代轨检车能及时提供直观反映轨道状态的波形图,并能提供经车载计算机处理打印成的轨道状态报告表,以及记录在磁带上的轨道状态资料等。有的还可在轨道状态严重不良和需紧急补修的地方,直接在轨道上喷上颜色标记。将磁带记录送地面计算机进一步处理,便可编制出各种轨道状态管理图和轨道整修作业计划表。
发展状况
中国于1953年试制成功第一辆自己设计的客车式机械轨检车。 1971年又制成客车式电气轨检车。图2为1971年中国制成的“TSK22”型电气轨道检查车。
这种电气轨检车长约26米,自重约62吨,能同中国的特快列车联挂进行检测。
这种电气轨检车采用旋转变压器作位移传感器,借助三个轮对所构成的18.5米不对称弦测量轨道高低,用三轴转向架的三个轮对构成的 3.4米对称弦测量钢轨接头低陷;轨道水平状态由陀螺装置测量,三角坑由相距15.1米的两个轮对测得。
测量结果用电磁笔记录仪记录在纸带上。
70年代中期,中国开始进行轨检新技术的研究,现已先后研制出能测量轨道高低、水平、轨面不平顺的“惯性基准轨道不平顺检测装置”和“轨道超高检测装置”、“充电式轨距检测装置”、“多功能振动检测装置”等新装置。目前正在进一步研制用这些新装置和其他先进设备(如电子计算机等)装备的新型轨道检查车。
⑧ 轨检车的国外轨道检测车:
East-i是日本完全利用其国内技术开发的综合检测列车,由6辆检测车组成,可以检测轨道几何参数、接触网、通信信号、轮轨作用力、环境噪声等,最高检测速度可达 275km/h。该轨道检测系统安装在列车的第3号车辆上,这个车辆采用了与实际运行车辆相同的两个二轴拖动转向架结构。East-i综合检测列车可在一次运行过程中实现对线路的综合检测功能,但各检测项目之间的检测数据并不综合到一个统一的中心,各检测单元有各自独立的数据显示、记录、转储和地面分析、处理、维护管理决策等系统,全系统仅有位置、时间和速度是统一的。
East-i综合检测列车是相对成熟的产品,在保障日本高速铁路的运行安全中发挥了重要的作用。其轨道检测方法为弦测法,而目前国内轨检车和世界绝大多数国家轨检车普遍采用惯性基准法,在测量原理上采用两种不同的技术路线。
一般认为,弦测法传递函数收敛性差,East-i采用了相应的修正方法。由于弦测法不能全部真实反映轨道状况,在复原及逆滤波处理时仅能换算到40 m波长的测值,因此该方法存在一定的缺陷。惯性基准法受速度影响较大,不适宜低速检测,在高速时更具优势。另外,East-i整套设备及软件均为日本的品牌和自主开发的产品,与我国设备和软件的兼容性差,不利于系统的后续使用和二次开发。 美国各铁路公司均拥有自主研发的轨检车,美国联邦铁路署还委托Ensco公司研制了技术先进的T10型轨检车,用于抽查各铁路公司的线路质量。T10型轨检车采用惯性基准测量原理和非接触式测量方法,应用光电、伺服、数字滤波、局域网技术,增加了钢轨断面测量系统,使轨检车的功能更加齐全,检测速度可达192km/h。
ImageMap公司研制的Laserail轨道测量系统采用激光摄像、高速图像处理技术取代了光电伺服技术,体现了轨道检测技术的发展方向。它采用惯性基准原理、非接触式测量方法,系统包括两个光纤陀螺和两个加速度计及其模拟处理板,4个激光器、10台摄像机等,可测量轨距、左右轨向、左右高低、超高、水平、三角坑、曲率、钢轨顶磨和侧磨等。检测速度可达300km/h。 为适应奥地利高速铁路的检测需要,奥地利EM250型轨检车检测速度为250km/h,其主要技术特点是采用惯性基准原理、光电转换技术和多处理技术等,除了测量轨道几何参数和车辆振动参数外,还能测量钢轨断面、轮轨作用力并记录环境图像EM250 型轨检车有两种途径评定轨道质量:
1)采用ADA-Ⅱ 程序来获得轨道质量系数,评定轨道区段的整体不平顺状态;
2)采用ADA-Ⅲ程序来判断超过规定限界值的幅值大小,并对不同等级轨道病害进行分类和统计并能及时发现危及行车安全的轨道病害,又能评定单元区段的线路质量。 “阿基米德号”综合检测列车又称 Roger2000,是 MER MEC公司和TECNOGAMMA公司为意大利铁路设计制造的,检测速度可达220km/h。检测项目包括轨道几何参数、钢轨断面、钢轨波浪磨耗、接触网及受流状态、通信和信号、车体和轴箱加速度、轮轨作用力等。车上有57台计算机,每秒钟可处理30G数据,有24个激光器、43个光学摄像传感器、47个加速度计以及大量的强度速度、定位以及温度传感器,以及用于航空电子领域的惯性平台。
意大利高速铁路使用“阿基米德号”综合检测列车已经形成了一整套检测和维修养护体制。综合检测列车各子系统有独立的存储数据库,在速度、时间、空间上保持同步,所有子系统的检测数据集成到车载中央数据库,由中央数据库将数据通过无线网络传输到地面的RFI数据处理中心进行综合分析、比较,从而制定科学的维修保养计划,指导养护维修。其轨道检测在较低速度时采用弦测法,在较高速度时采用惯性基准法,较好地发挥了两种测量原理的优势。 目前在法铁的线路上主要应用着三种检查车,分别为Mauzin、Helene和Melusine。
Mauzin主要用于轨道几何参数的检测,可以检测轨面高低、断面、方向、扭曲、轨距等项目,采用13m和65m弦,检测速度可以达到200km/h,法铁的高速线上有5辆Mauzin,每年对线路检测2~3次。
Helene主要用于信号的检测,可以测量轨道电路中电流的强度、纵横向交叉对话、轨道的横向阻抗等,检测速度200km/h,每两个星期对线路检测一次。
Melusine主要用于检测列车的舒适度以及钢轨断面的绘制,可以测量列车的位置和速度、转向架和车体的加速度、受电弓、钢轨表面、接触网电流等到项目,检测速度300km/h,每15到30天对线路进行一次检测。
MGV是专为法国高速铁路研制的综合检测列车,该列车的主要特点是集成以上各系统,并实现检测速度达到320km/h,这样在正常运营(发车间隔3~4分)的情况下就可以对线路设备进行检测,轨道几何的检测实现无接触化。在MGV检测列车中采用采用法国既有成熟的动力集中式TGV动车组,8节车辆的编组:
Coach 1:用于测量车体、轴箱等加速度,测量钢轨断面并进一步计算轨道的几何形位;
Coach 2:用于接触网检测,受电弓接收到的电流、弓网的动力学参数以及磨耗情况;
Coach 3:用于信号检测,信号的传播、信号传播的速度、同轨道的固定接触;
Coach 4:其它杂项,如列车与轨道的通话,GSM,列车定位、列车速度、风力等。
其它车辆分别由餐车、卧铺车等组成。
该车检测项目比较齐全,几乎包括了从接触网及受流状态、通信信号、轨道几何、钢轨断面、钢轨表面、线路环境数字图像、扣件、轨枕、道碴等各项基础设施和运行状态。