❶ 大数据重要的意义
什么是大数据,大数据的意义是什么?
大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
什么是大数据,大数据为什么重要,如何应用大数据
空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。
大数据的意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。 阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。 有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。 大数据的价值体现在以下几个方面:1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销2) 做小而美模式的中长尾企业可以利用大数据做服务转型3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。3)分析所有SKU,以利润最大化为目标来定价和清理库存。4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。5)从大量客户中快速识别出金牌客户。6)使用点击流分析和数据挖掘来规避欺诈行为。
什么是大数据,大数据为什么重要,如何应用大数据
读读这本书吧。。
驾驭大数据 驾驭未来
大数据的流行,也引发了图书业大数据出版题材的升温。去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国 *** 的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。
该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!
大数据重要以及不重要的一面
与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。
网络数据与电子商务
对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。
一些有价值的应用场景
大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手......
大数据的到来对我国经济发展有什么意义
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
互联网大数据有哪些好处多
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。
现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。
通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。
大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。
以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。
为什么使用大数据?
数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。
现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。
更完整的解析
大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。
现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。
类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。
大数据是什么?
由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:
量级(Volume):大量的数据
速率(Velocity):高速的数据产出
多样性(Variety):多种类型和来源的数据。
正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:
网站分析
移动分析
设备/传感器数据
用户数据(CRM)
统一的企业数据(ERP)
社交数据
会计系统
销售点系统
销售体系
消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)
公司内部电子表格
公司内部数据库
位置数据(空间位置、GPS定位的位置)
天气数据
但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。
想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。
大数据的好处
大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......
什么是“大数据”的真正含义
大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据给人们带来的好处
对一般用户来说意义不大,对于药店、药厂有必要了解用户的需求,但是如果真的利用起来能给用户带来选药的便利还是很有用的。比如当你生病不知道选哪种药好的时候,根据循证医学原理能帮你找到合适的药这样也算是带来了好处。
工业大数据对中国有什么意义
工业大数据可以推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂,推动制造模式变革和工业转型升级。
国家下一步将利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,研发面向不同行业、不同环节的大数据分析应用平台,选择典型企业、重点行业、重点地区开展工业企业大数据应用项目试点,积极推动制造业网络化和智能化。在应用项目试点过程中,需要开展应用示范安全可靠性方面的测评,利用大数据测试技术、工业电子系统测试技术和工业云测试技术,保障工业企业大数据应用项目试点的稳步推进,中国软件评测中心在相关方面有较深厚的技术积累和案例积累,可以为我国工业大数据发展保驾护航。
大数据的特点主要有什么?
大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
大数据的特点:
1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;
2、种类(Variety):数据类型的多样性;
3、速度(Velocity):指获得数据的速度;
4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量
6、复杂性(plexity):数据量巨大,来源多渠道
大数据的意义:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的缺陷:
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。” 这确实是需要警惕的。
❷ 大数据时代催生思维变革
大数据时代催生思维变革
英国教授维克托·迈尔—舍恩伯格的《大数据时代:生活、工作与思维的大变革》一书的问世,让大数据引发全球热议。当许多人还没彻底弄明白IT是什么的时候,DT时代已经来了。“DT时代”方兴未艾,各行各业都在往这块宝藏进军,却没有一个有力的组织,没有规范行为的游戏规则,因“大数据”理论引发的激辩和质疑也不绝络绎:数据交易规则如何制定、数据安全如何保障、数据伦理底线在哪儿?产业发展离不开理论支撑,当别人还在思索“大数据是什么”,贵阳已经在探索“大数据怎么做”。对于大数据时代的贵阳探索,互联网行业的大佬们有自己的看法。阿里巴巴集团董事局主席马云表示,云计算、大数据现在已成为科技发展的代名词,数据是驱动商业向前发展的核心。在数据战略重点实验室主任连玉明教授看来,贵阳首家大数据战略重点实验室的建立对于大数据产业发展意义重大。“很多地方都在谈数据经济、云计算产业,但贵州下如此大的决心,跟阿里巴巴集团一起干、坚持干、务实干,一起探索未来的勇气和魄力值得敬佩。”马云说。马云认为,数据是驱动商业向前发展的核心,更是人类社会的未来。以控制为出发点的IT时代正在走向以激活生产力为目的的DT(数据技术)时代已经成为一种趋势。从组织内部角度来看,DT会改变一个组织的沟通、生产、消费方式,驱动它的架构、文化的变革;从跨组织角度来看,由于DT时代的“利他”思维取代IT时代的“利我”思维,组织与组织的合作将远大于竞争,跨组织的协同会频繁发生,而且将变得越来越敏捷,越来越高效。这不仅仅是技术的升级,更是思想意识的巨大变革。阿里巴巴集团于2014年4月17日与贵州省政府签订全面战略合作协议,项目之一“云上贵州”已取得一些成绩,成为政府运营云计算和大数据的最佳实践。政府作为一个组织,生来就是一个极为重要的数据生产和交换平台。数据本身并不能创造价值,只有让更多的人对其进行分析和运用,才能成倍地创造价值。受摩尔定律驱动的信息技术不断廉价化、互联网的普及以及其延伸所带来的信息技术无处不在的应用,催生大数据时代到来,进而使信息化进入以数据广泛关联、跨域融合和深度应用为特征的智慧化阶段。在当前的大数据热潮中,相关书籍、文章可谓车载斗量,共识与争鸣共存。《块数据——大数据时代真正到来的标志》一书却从块数据这个新颖的视角来看待大数据及其未来的发展,颇有创意,发人思考。梅宏认为,“条数据”和“块数据”的划分,师法自然,抓住了数据的本质。从其定义和静态角度看,“条”是一个领域或行业内纵深数据的集合,可以反映本领域或行业的规律,无疑具有很大价值。“块”是一个物理区域或行政区划内众多“条数据”的集合,更能反映现实世界和社会的极度复杂性,其综合应用无疑会带来数据价值的显著提升。从动态的视角看,重视“块数据”是为了避免仅仅关注“条数据”而可能带来的新的数据孤岛现象,更是体现了一种对信息化建设的发展性思维。“摩尔定律是指数社会的基因,大数据是指数社会的蛋白质。”对于这句话,吴甘沙认为,基因决定生命特征,是初始点,而蛋白质是生命的物质基础,是生命活动的主要承担者。而大数据就像生命体质中的蛋白质一样,是当前社会生命活动的主要承担者。对于数据开放,吴甘沙认为,不涉及个体的公共数据和科研数据都可以开放。涉及个体的数据要明确数据权属、隐私界定,获得拥有者授权,采用技术匿名化,而后再考虑开放。而目前英美开放的主要特点是原始数据(而非提炼数据)。在吴甘沙眼里,贵阳全城Wifi覆盖采集数据的优点就是有数据发生所在地点的信息,而这是语境的一个重要因素。他同时指出,在为用户提交免费Wifi服务时,需要明确获得用户对数据授权。对于大数据、云计算、移动互联网、物联网,吴甘沙认为,这些都是不可独立分割的。正如金融数据跟电商数据碰撞在一起,就产生了像小微贷款那样的互联网金融;电信数据跟政府数据碰在一起,可以产生人口统计学方面的价值,帮助城市规划人们居住、工作、娱乐的场所;物流数据和电商数据凑一块,可以了解各个经济子领域的运行情况;物流数据跟金融数据放在一起,就产生了供应链金融等等。连玉明认为,发展大数据是人类文明发展和全球化进程的必然趋势,也是贵阳坚守发展和生态“两条底线”,探索“双赢之路”的战略选择,为西部欠发达地区实现后发赶超找到一条新路径,这是认识、适应和引领新常态的思维变革。面对新机遇、新挑战、新任务,贵阳发展大数据需要洞察先机,抢占制高点,更需要研究先行和战略引领。在这样的背景下,大数据战略重点实验室的出现是必要的。连玉明指出,大数据战略重点实验室是一个跨学科、专业性、国际化、开放型的研究平台。实验室将聚集国内外大数据相关专业研究者、管理者和决策者,立足全球大数据发展趋势和中国大数据发展实践,以大数据发展的重大理论和现实问题为主攻方向,加强大数据发展全局性、战略性、前瞻性研究和咨询。连玉明表示,大数据战略重点实验室未来的研究方向是通过对大数据发展进行全局性、战略性、前瞻性的研究和咨询,主要包括大数据发展趋势研究、构建“块数据”理论模型和应用模型、建立DT空间、研究编制和发布“大数据指数”和筹建一个“中国DT产业50人论坛”五项重点工作。数据孤岛是大数据行业发展面临的最大问题。一方面,各行业、企业和政府都在竭尽所能地采集数据、占有数据和利用数据。另一方面,大部分数据被各个行业、企业、机构和政府封锁起来,形成一个个“数据孤岛”,无法自由流通,数据之间缺少连接。“而块数据理论对于打通‘数据孤岛’意义重大。”傅志华认为,块数据的提出,最大意义在于有了一个完整的数据源,能够全方位地了解用户。“如同炒菜一样,对于厨师而言,如果菜的料不够丰富,通过搭配不同的原料来做出好的菜品是有挑战的。”谈到数据开放,傅志华认为,数据开放与“数据孤岛”是息息相关的。为解决“数据孤岛”必须促进数据开放,数据开放能够最大程度地促进数据行业的发展。“数据开放很多时候并不是技术问题,从国家层面推动数据开放意义重大。目前我国的政策法规不完善,大数据挖掘缺乏相应的立法,无法既保证共享又防止滥用,数据开放与隐私如何平衡是亟待解决的问题,要在推动数据全面开放、应用和共享的同时有效地保护公民、企业的隐私。以上是小编为大家分享的关于大数据时代催生思维变革的相关内容,更多信息可以关注环球青藤分享更多干货
❸ 马云说大数据时代最重要的是做最好的自己,为什么
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢?
工具抢了人的饭碗?
很多大数据分析工具的设计起点非常高,定位了数据分析过程中所需要的大部分功能。很多工具的功能涵盖了从数据前期整合、收集到挖掘、分析乃至末端的数据可视化的整个数据分析过程,功能不可谓不强大。
但如果仅凭这些就认定大数据分析工具能取代数据分析师,未免有些杞人忧天了。恰恰相反,大数据分析工具不是数据分析师的竞争者,而是协助者。工具本来就是为人服务的,数据分析师的专业素养让其能很好的发挥大数据分析工具的性能,二者相辅相成,是友非敌。
企业的支持
虽然大数据的概念已经普及,但是很多企业还是留存有一些传统的观念。很多企业虽然重金聘用了数据分析师甚至是组建了数据分析师团队,但是却并没有建立完善的数据价值体系。对数据分析工作缺乏理解与支持。
相对于数据管理,数据分析工的工作重心还应该放在“挖掘数据价值”上。企业与数据分析师直接缺少职能的沟通,将直接影响企业对数据分析师工作性质的定位;同时,企业应该建立数据库并部署大数据分析工具,为了能更好地对接用户,也为企业和数据分析师留有足够的空间。
从幕后到台前的转变
以往的业务人员经常要磨破嘴皮才能得到别人的认同,而现在许多企业正在考虑让数据分析师带着数据分析结果去谈业务。打算以“让数据说话,以数据服人”去赢得客户的信任。而主要的实施过程,是靠数据可视化技术来实现的。
数据可视化技术让数据能以图表和视频的方式直观地展示在人们面前,而数据分析师作为数据的管理者和挖掘者,是最适合不过的讲解人了。这样就要求数据分析师不仅要有扎实的数据分析能力,还要能提取数据精髓,并将之演讲出来以获得他人的认同。从幕后转到台前,这里面会需要许多技能,数据分析师的工作性质也将发生改变。
在大数据时代,数据分析师所扮演的角色不可能是一成不变的。而只有顺应时代的潮流,响应时代的需要,数据分析师这个行业才能继续生存并发展。其实,大数据分析工具,数据可视化这些技术的出现固然使行业受到了影响与挑战,但对于数据分析师来说,未尝不是一次摆脱传统束缚的机遇!
❹ 大数据时代什么最重要
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质
的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式 著云台
例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。
大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
一些但不是所有的MPP的关系数据库的PB的数据存储和管理的能力。隐含的负载,监控,备份和优化大型数据表的使用在RDBMS的。
斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。
FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。
“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。
基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。
最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普(微博)、IBM、微软(微博)在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。
“大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。
❺ 大数据时代:马云说的大数据DT时代究竟是个啥
dt
(data
technology)数据技术,与it(information
technology)相对应,由马云在世界互联网大会中演讲时正式提出版。马云提出,人类已经从权it时代走向dt时代,it时代是以自我控制、自我管理为主,而dt(datatechnology)时代,它是以服务大众、激发生产力为主的技术。it技术和data技术是有巨大的差异,data技术的核心,也就是互联网这一世纪最了不起的东西,利他主义。it时代到dt时代,最小的标志是你的思想,如何帮助别人成功
❻ 大数据:大变革、大机遇
大数据:大变革、大机遇
从来没有哪一次技术变革能像大数据革命一样,在短短的数年之内,从少数科学家的主张,转变为全球领军公司的战略实践,继而上升为大国的竞争战略,形成一股无法忽视、无法回避的历史潮流。互联网、物联网、云计算、智慧城市、智慧地球正在使数据沿着“摩尔定律”飞速增长,一个与物理空间平行的数字空间正在形成。在新的数字世界当中,数据成为最宝贵的生产要素,顺应趋势、积极谋变的国家和企业将乘势崛起,成为新的领军者;无动于衷、墨守成规的组织将逐渐被边缘化,失去竞争的活力和动力。毫无疑问,大数据正在开启一个崭新时代。
大数据时代有什么本质特征?大数据的来源是什么?大数据又将流向哪里?大数据在提升政府治理、改善经济治理、再造公共服务模式、激发商业创新方面有哪些卓越案例?中国需要怎么样的战略反应才能抓住大数据带来的宝贵机遇?一系列问题亟待研究者给出深入解析。
“数据驱动发展”成为时代主题
如今,大数据已经被赋予多重战略含义。从资源的角度,数据被视为“未来的石油”,作为战略性资产进行管理;从国家治理角度,大数据被用来提升治理效率、重构治理模式、破解治理难题,它将掀起一场国家治理革命;从经济增长角度,大数据是全球经济低迷环境下的产业亮点,是战略新兴产业的最活跃部分;从国家安全角度,全球数据空间没有国界边疆,大数据能力成为大国之间博弈和较量的利器。总之,国家竞争焦点将从资本、土地、人口、资源转向数据空间,全球竞争版图将分成新的两大阵营:数据强国与数据弱国。
宏观上看,由于大数据革命的系统性影响和深远意义,主要大国快速做出战略响应,将大数据置于非常核心的位置,推出国家级创新战略计划。美国2012年发布《大数据研究和发展计划》,并成立“大数据高级指导小组”,2013年又推出“数据—知识—行动”计划,2014年进一步发布《大数据:把握机遇,维护价值》政策报告,启动“公开数据行动”,陆续公开50个门类的政府数据,鼓励商业部门进行开发和创新。欧盟正在力推《数据价值链战略计划》,英国发布《英国数据能力发展战略规划》,日本发布《创建最尖端IT国家宣言》,韩国提出“大数据中心战略”。中国多个省市发布了大数据发展战略,国家层面的《关于促进大数据发展的行动纲要》也于2015年8月19日正式通过。
微观上看,大数据重塑了企业的发展战略和转型方向。美国的企业以GE提出的“工业互联网”为代表,提出智能机器、智能生产系统、智能决策系统,将逐渐取代原有的生产体系,构成一个“以数据为核心”智能化产业生态系统。德国企业以“工业4.0”为代表,要通过信息物理系统(CPS——cyber physical system),把一切机器、物品、人、服务、建筑统统连接起来,形成一个高度整合的生产系统。中国的企业以阿里巴巴董事局主席马云提出的“DT时代”(data technology)为代表,认为未来驱动发展的不再是石油、钢铁,而是数据。这三种新的发展理念可谓异曲同工、如出一辙,共同宣告了“数据驱动发展”成为时代主题。
与此同时,大数据也是促进国家治理变革的基础性力量。正如《大数据时代》作者舍恩伯格在定义中所强调的,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的”。在国家治理领域,阳光政府、责任政府、智慧政府建设,大数据为解决以往的“顽疾”和“痛点”提供了强大支撑;精准医疗、个性化教育、社会监管、舆情监测预警,大数据使以往无法实现的环节变得简单、可操作;大数据也使一些新的主题成为国家治理的重点,比如维护数据主权、开放数据资产、保持在数字空间的国家竞争力等。
从哲学意义上来看,大数据不仅仅是一场技术革命,也不仅仅是一场管理革命或者治理革命,它给人类的认知能力带来深刻变化,可谓是认识论的一次升华。具体而言,大数据可以为决策者解决“四个问题”,提升“两种能力”。一是解决“坐井观天”的问题,以往人们决策只能基于视野之内极为有限的局部信息,和井底之蛙无异,大数据则可以实现整个苍穹尽收眼底;二是解决“一叶障目”的问题,以往不具备全样本数据分析能力,只能用小样本分析近似推理,犹如从“泰山”中取来“一叶”,而真理可能存在于全样本的海量数据之中,借助大数据则可完全克服;三是解决“瞎子摸象”的问题,七个瞎子根本无法根据各自的认识加总出完整的大象,因为他们的信息是相互离散的,无法有效关联起来,而大数据的基本优点是在深入关联中还原事物的原貌;四是解决“城门失火,殃及池鱼”的问题,人们习惯于因果分析,遇到这种“稀奇古怪”的因果链则很难前瞻和推理,但大数据注重相关关系,可以准确地发掘出规律。提升两种能力,一个是“一叶知秋”的能力,体现大数据敏锐的洞察能力,另一个是“运筹帷幄,决胜千里”的能力;体现大数据对时空约束的突破。这些足以说明,大数据是人类认识世界和改造世界能力的一次升华。
中国成为数据强国的优势、挑战与路径
值得振奋的是,中国具备成为数据强国的优势条件。从2013年至2020年,全球数据规模将增长十倍,每年产生的数据量由当前的4.4万亿GB,增长至44万亿GB,每两年翻一番。从全球占比来看,中国成为数据强国的潜力极为突出,2010年中国数据占全球比例为10%,2013年占比为13%,2020年占比将达到18%,届时,中国的数据规模将超过美国的数据规模,位居世界第一。中国成为数据大国并不奇怪,因为我们是人口大国、制造业大国、互联网大国、物联网大国,这都是最活跃的数据生产主体,未来几年成为数据大国也是逻辑上必然的结果。
尽管存在成为数据强国的潜力,但在目前的政策环境之下,我国推进大数据战略仍存在以下几个清晰的挑战。第一,顶层设计方面,全球大国之间围绕大数据的竞争颇为激烈,中国作为一个后发国家,想要实现弯道超车,后来居上并非易事。如何能够紧扣创新前沿,把准未来趋势,超前战略部署,对政策设计来说是一个非常现实的挑战。第二,数据开放方面,“数据孤岛”广泛存在,虽然政府掌握着80%的数据,但现实中却相互割裂,自成体系,“部门墙”“行业墙”“地区墙”阻碍了数据的流动共享,数据被视为部门的利益和隐私,这与大数据时代的基本理念准则相悖。第三,大数据相关的法律、法规、标准缺位,导致能够开放的数据不开放,需要保护的隐私不保护,企业由于标准模糊而无法大胆创新。第四,“数据主权”容易受到侵蚀,由于数据空间是国家新的战略维度,尚没有完备的安全保障体系,再加上电脑、手机、芯片、服务器、搜索引擎、操作系统、软件等核心的数据“基础设施”大量依赖进口,数据资产极易流失,数据主权极易受到侵蚀。
把握优势,克服挑战,抓住大数据革命带来的“机会窗口”,建设数据强国,是实现中华民族伟大复兴的一个有力支撑。然而,我们需要怎样做才能更好地拥抱大数据时代,确保在数字化趋势中立于不败之地呢?首先,需要在国家顶层设计上有一个清晰的行动框架,包括由什么部门主导、哪些部门参与、什么样的协作机制、沿着什么优先次序、克服哪些既有的障碍、达到什么战略目标,只有这样,各部门、各地区、企业界、学术界才能形成合力,在一个共同的路线图上协作推进。其次,盘活数据资产,在数据开放上取得实质性突破。一些基本的建议包括:加快G2G(政府与政府之间)、G2B(政府与企业之间)、G2C(政府与公民之间)大数据开放与共享;推动基础性、战略性大数据资源库整合;加强大数据基础设施建设,编制国家大数据档案。最后,把强大的“国家企业”和活跃的“万众创新”结合起来。一方面,要培育可以和国际“八大金刚”并驾齐驱的巨型企业作为大数据环境中竞争的中坚力量,同时,鼓励和引导大众创业、万众创新成为数据生态系统中的活跃力量。
以上是小编为大家分享的关于大数据:大变革、大机遇的相关内容,更多信息可以关注环球青藤分享更多干货
❼ 马云 互联网大会 这是一个什么时代
事实上,这已经不是马云第一次推出DT的概念了,在去年的首届世界互联网大会和马云赴台湾的演讲中,他都有不同程度地提及DT。那么,问题来了:DT时代究竟是怎样的一个时代?1、DT时代以服务大众、激发生产力为主。
DT是数据处理技术(Data Technology)的英文缩写。马云提出,IT时代是以自我控制、自我管理为主,而DT时代,它是以服务大众、激发生产力为主的技术。简而言之,IT是以我为中心,DT是以别人为中心。这两者之间看起来似乎是一种技术的差异,但实际上是思想观念层面的差异。
2、DT让别人愈来愈强大。
马云表示,IT能让自己愈来愈强大,而DT能让别人愈来愈强大,"DT是让你的消费者、让你的客户、让你的员工更具能力。"
3、DT更讲究开放、透明、分享及合作。
马云还表示,DT更讲究开放、透明、分享及合作,"IT时代诞生无数剧透"。未来,大数据的云端计算处理,将消除商业社会的边界,让一切商业主体相互自由连通。而这些都是建立在全世界数据信息完全"透明"的基础之上。
4、从IT时代到DT时代,小企业是关键。
在马云看来,IT时代到DT时代,小企业变成关键。他认为互联网一定是做昨天做不到的事情。那么什么事情昨天做不到?其实就是帮助那些小企业,解放那些小企业的生产力,能够让这些小企业具有IT的能力。
马云说,"小企业的需求是很多的,需要物流、诚信、信息、数据和支付,这整个体系,我们是没有办法全做完,所以必须引进各种各样的合作伙伴,大家一起来干,每个人在这里面拿到一点点,你才可能有机会成功。"
5、DT时代重体验,女性越来越"厉害"。
马云指出DT时代一个非常重要的特征是体验。对于体验,马云提出了一个比较新颖的观点,他认为体验时代会出现女人越来越厉害的现象,因为她们身上有着独特的东西,懂得怎么服务别人、怎么理解别人、怎么支持别人。所以,未来的DT时代,可千万不要小看了女人。
6、DT时代最大的机遇和挑战:能否把IT行业和传统行业进行完美融合。
马云认为在未来的20年,那些不能和传统行业进行完美结合的互联网公司将会被淘汰,同样那些不能与互联网技术、思想进行融合的传统行业也将活不长久。能否把IT行业和传统行业进行完美融合,这是未来DT时代最大的机遇也是最大的挑战,也是关乎能否把互联网经济做起来的关键。马云指出,当前最好的办法是建立一个良好的互联网生态环境,搭好一个很好的基础设施,同时培养出一批DT时代的人才。