1.帮助企业做出更好的业务决策
如果有一个预测未来的水晶球的话,那么企业管理人员就可以做出影响业务发展的决定,而大数据就是他们正在寻找的水晶球。企业管理人员可以通过采用大数据分析技术,不必猜测重要的趋势和见解,也不必担心错误的决定会给企业的未来发展带来风险。
尽管没有其他背景信息无法帮助企业管理人员做出准确的预测,但它可以提供明智的决策所需的信息。
他们可以查看数据,以查看产品价格将如何变化以及将如何影响整体销售。如果是一家财务公司,大数据可以帮助企业管理人员在欺诈发生之前就对其进行预测。而这是金融公司在大数据上进行投资的最常见原因之一。
这种可能性是无止境的。大数据技术可以细分数据,以便特定部门可以仅使用相关数据来确定其最佳的发展方式,而不会陷入困境。
2.帮助企业改进产品
在大数据出现之前,很多企业通常通过组建调查小组来帮助他们了解客户在购买某种产品或服务时想要什么,他们会努力使自己的产品更好地满足客户的需求。换句话说,这是一个漫长而低效的过程。
现在,数据开始发挥作用。企业可以查看客户的消费习惯,以了解他们在某些产品中的需求。如果提供一些服务,则可以根据客户的习惯来调整服务应包括的内容。
3.简化业务流程
使用自动化可以简化业务流程的一个例子是改进效率较低的原有人力资源系统。
使用大数据可以消除许多重复性行为并使其自动化,以便企业的员工可以处理其他更重要的需要人工干预的事情。
关于企业如何从大数据系统中获益?,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 马云做大数据怎么赚钱
随着大数据时代的来临,大数据早已不再神秘。带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。
任何一家有EXCEL表格的公司,都敢说自己是大数据公司;任何一个地方政府公开有数字的PDF文档,就敢说是政府大数据公开。以至于业界人士担忧,某天大家再听这个概念都麻木了,然而行业还是没有做出多少事情。
区域数字鸿沟巨大
说起掘金大数据,一定绕不开政府数据。地方政府掌握着80%以上的数据。每隔一段时间,从中央到地方,都会发布关于大数据开放的政策。高层谈新经济,言必称大数据。
而在执行层面,目前地方政府大多处于观望状态。关注政务数据领域的清华大学数据科学研究院执行副院长韩亦舜表示,政府数据开放并没有那么复杂,需要有地方能真正去实践和摸索,做一些事情,当下所有的人都在谈数据开放,但做实事的不多。
韩亦舜曾建议西部一些地方政府借大数据发展的机会,率先开放数据获得先发优势,另外同步做好信息化补课。
6月份,笔者见到一位来北京寻求合作的西部省份地理信息测绘局局长,他长期在部委工作,前些年调到地方当部门一把手,发展大数据思路清晰,不过让他苦恼的是,当地信息化水平不高,很多地方没有数据,有的数据还在纸上。
他酝酿出台一个规定,以后所有的图都不准画在纸上,必须上网,以电子化的形式存储。当下他最想解决的问题是信息化,先收取数据,然后通过建立地方数据中心的形式,与企业合作,做地理信息垂直领域的数据开放和挖掘。
走在前沿的贵州省,希望以发展大数据弯道超车,实现新经济的腾飞。然而从数据开放的程度来看,当地一些职能部门,所谓的公开数据还停留在提供PDF文件阶段,远非结构化的数据,按照国际数据公开标准来说,并不能算政府数据公开。
单从数据开放来看,思路最清晰规划更具体的,还是广东、上海等发达地区。对于地方政府的大数据园区来说,发达地区好比“富二代”,一出生就含着金汤匙,但大部分地区还是“穷二代”,需要更大力度的数据挖掘与开放。由于各地在大数据方面存在差距,不同区域的数字鸿沟会继续深化。
饥渴的大数据创业公司
在掘金大数据的背景下,企业早已经等不及了。早些年,部分企业通过各种交易手段,获得政府数据。在数据开放的背景下,部分企业还在依托不规范交易,已经有政府部门被巡视组查出了因数据交易衍生腐败。
一部分企业希望参与政府数据公开进程,帮助政府做数据公开。比如数据堂公司与贵阳市政府共建数据生态城市。还有一批公司,则是急速扩张,跟各地政府成立相关的合资公司。
当然,还有转型大数据二次创业的公司。在贵阳数博会上,笔者见到很多大数据公司,就是以前卖电脑和软件开发的IT公司,转型做大数据,业务范围无所不在,包括智慧城市、软件开发、智慧农业、医疗等。
除上述归类外,企业为了获取政府数据,采取各种“曲线救国”的招式。前不久,笔者熟悉的一家南方大数据创业公司,为了获取某西部城市政府部门数据,报名参加当地的创业大赛,希望通过得奖,引起当地政府重视,达成数据合作。
这家公司的CEO在参赛间隙,拖着行李箱与当地国企联络,希望能够以合资的形式成立公司,共同挖掘当地数据。
这位CEO还通过各种方式,找到该市分管大数据的负责人,希望能够谈成合作。他勾画的蓝图很美好:获取一个城市的数据,做成样板,然后在全国复制,迅速从0到1成为该行业的“寡头”企业。
不过,目前还没有关于这家公司取得实质进展的消息,但这家公司寻求政府大数据开放的决心和路径,颇具有典型性。
政府资源导向,仍是目前很多数据公司努力的方向。很多大数据公司在融资过程中,强调一定要有国有资本进入,而且坚决远离境外资本。
从2015年国内最大的几笔大数据创业公司的融资情况来看,几乎都有国有资本进入,即便只占很小的比重。在某大数据公司融资发布会上,笔者随机问了几家投资机构选择投资这家公司的原因,答案惊人一致:有政府数据资源。
而在一些专家和专业投资人看来,从价值投资的角度,一是真正有技术优势的公司,二是有自己数据源的公司。依托政府资源的公司,从长远来说,并没有太大的投资价值。
乐观者认为,政府数据开放最终会走向规范化,有科技含量的公司最终会在泡沫破灭后存活下来。
BAT能否领军?
BAT中的某一家,会成为全球最大的数据公司么?
在专业人士看来,媒体喜欢造概念,这个说法很不专业。因为数据就像石油一样,每个地理区间都有,谁储存了多少,很难量化和比较。
马化腾和张小龙都说,他们很焦虑,因为用户花在微信上的时间太多了。不过马化腾又说,微信公众号是腾讯前三年最伟大的发明,因为可以把人留在微信上,大家就离不开了。
BAT三家公司一方面通过自身的数据,做出反映数字中国的图谱,甚至把脉经济走向;另外也在建立自身的数据生态体系;以网络为代表,则认为大数据的最终应用是人工智能。
京东CTO张晨告诉笔者,因为京东有自己的物流体系,其电商数据包括详细的消费者画像。张晨说,如果通过电商大数据分析,提高精准服务水平,能提高销售一个百分点,对京东来说都是很大的大数据价值变现。
互联网企业的数据,在整个大数据生态中,能够起到多大作用,各方都在摸索。很多人认为,互联网企业的数据价值被高估了。
比如韩亦舜认为,相对实体经济来说,互联网企业的数据,更多是第三产业,是对消费者端的,相对整个实体经济,比如说制造业体系产生的数据,互联网数据并不算多。
“互联网只是个工具。”国家统计局一位原副局长在一次数据研讨会上直言。他认为,互联网是传递现代数据的工具,不能唱得比实体经济还高。
至于BAT如何从大数据掘金,笔者聊了很多业内人,听得都不太明白,仍不得解。一家企业CEO表示,现在大家的思路其实都不清晰。
6月份,马云在一次活动上说,阿里是一家大数据公司,不过我们也不知道怎么用数据挣钱。
Ⅲ 公司如何通过大数据赚钱
公司如何通过大数据赚钱
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
大数据无疑是时下炙手可热的流行词汇,然而,我们鲜少看到具体大数据如何带来收益,和具体如何实现的例子,这是怎么回事呢?
多年来,在经历了几个通信和投行的大数据相关早期实施项目后,我认为这个新兴技术的收益主要在于:实现对复杂系统更为精准的剖析,例如股票市场或供应链。(投行成为最早一批应用大数据分析的行业之一,可谓毫不意外。对利用技术提升效率,创造效益更为敏锐的商业模式,往往也是更赚钱的。)
在投行的日常工作中,为了精准地选择投资机会、选购股票,有大量对文档处理的需求,例如新闻简报,财务报表。如果人工进行,工作量过于庞大。因此助理分析师们往往简化他们的预测分析过程,并使用电子表格来完成绝大部分工作。通过大数据技术,投行可以整合各种信息,减少可能的(简化分析带来的)风险,从整体上带来更优越的分析和预测能力。
公司如何通过大数据赚钱
通过大数据平台,股票经纪和投资经理们可以聚合各种来源的非格式化数据,辅助判断哪些公司值得投资。所谓‘非格式化数据’包括如公司新闻,产品评论,供应商数据,价格变化,将这些信息以所谓“大数据”形式整合,通过建模,帮助股票经纪决策买入或售出股票。
有些采用如上方式进行投资预测的公司,很注重节约实施成本,例如使用云平台(如AWS),先从很小数量的服务器开始,随着获益增长,逐步提高投入。一位我认识的分析师,从一家大投行离职创业后,在不到六个月的时间内,仅仅使用非常有限的投入,创立了一个盈利良好的大数据交易系统。
即便在传统制造领域,大数据仍然可以提升预测能力。我曾经担任过顾问的某欧洲一线汽车制造厂商,通过建立一个钢材交易成本的分析系统,选择更好的时机,以更优价格买入原材料。这个系统由开源Java框架Hadoop创建,整合了多个供应商的共计15Tb的数据,在两年内为该公司节省了1600万美元。
这个项目的成功主要有两个原因:首先,公司有足够的信息为所有的供应商建模;其次,该项目节省的原材料成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并非每个大数据项目都会这样成功。公司在大数据项目上以亏损告终的概率,有时和成功的概率相差无几。大数据项目失败的早期症状有很多种,最常见的问题如:
步子迈太大:大数据并不需要一笔巨大的预算,如果怀着巨大的投入将带来巨大回报的预期开始一个大数据项目,往往会产生问题。在正式开始前,明智的做法是,尝试用有限的投入,在小范围内测试这个技术是否确实能带来预期的收益。按这样的节奏,一个项目可以按部就班地随着收益逐步提高,而逐步扩大投入规模,确保收益始终大于投入。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目是否可以不需要持续的人工支持来运作?如果答案是,需要人工支持,那么建议停止项目。建立这样一个项目往往意味着百万级的损失,无法在有利润情况下保持维护和运行。
迷信自然语言处理:大数据有个经常听到的功能是,通过自然语言处理,将各种领域的各种数据处理成直接可读可理解的形式。这听起来确实很赞,但是在实际应用中,往往不尽如人意。自然语言处理仍然存在许多妨碍应用的限制,主要由于人工智能的发展还不够--而且在可见的10年内,这个情况可能不会有很大改观。
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
以上是小编为大家分享的关于公司如何通过大数据赚钱的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 大数据市场有多大 怎么利用大数据赚钱
大数据市场有多大 怎么利用大数据赚钱
“大数据的市场规模没有天花板。”国务院发展研究中心信息中心研究处处长李广乾认为。不过细想,这正是目前各大企业和资本疯狂追逐大数据产业的重要原因。
“单独讨论大数据意义不大,它是依附于具体业务,和各个行业密切相关的。”李广乾认为,大数据产业规模和两大因素相关:一是经济发展水平,需要大数据的业务越多,市场体量就越大;二是信息化发展水平,能够产生数据的终端越多,数据就会越聚越多,而数据的生产是没有上限的。目前,大数据的金矿还仅是开挖了“冰山一角”。全球来看,Gartner2016年最新的技术成熟度曲线显示,大数据作为新兴领域,已经进入应用发展阶段,基础设施建设带来的规模性高速增长出现逐步放缓的趋势,技术创新和商业模式创新推动各行业应用逐步成熟,应用创造的价值在市场规模中的比重日益增大,并成为新的增长动力。从总体规模看,2016年,全球大数据市场规模实现16.5%的增长,预计将连续3年保持增速在15%左右。同时,大数据成为全球IT支出新的增长点,2016年,有近40%的企业正在实施和扩大大数据技术的应用,另有30%计划在未来12个月内应用大数据。“说大数据产业是一张画得很大的饼显然是片面的。”工信部赛迪研究院软件所所长潘文预测,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节,2016年达到3100亿元,将在2020年超过1万亿元;大数据关联产业规模2016年超过5万亿元,将在2020年超过10万亿元;大数据融合产业规模2016年达到3.5万亿元,将在2020年超过20万亿元。“从大数据核心产业结构看,基于大数据的服务是大数据核心产业的主体,其规模约占大数据核心产业规模的90%,未来,服务也将是大数据产业的最核心部分。”潘文说。做数据“搬运工”目前国内大数据公司分为两类:一类是已有获取大数据能力的公司,如网络、腾讯、阿里巴巴等互联网巨头及华为、浪潮、中兴等企业,涵盖了数据采集、数据存储、数据分析、数据可视化及数据安全等领域;另一类则是初创大数据公司,依靠大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。不同的大数据公司,盈利模式也不相同。如果把大数据产业比作房地产开发,那么海量数据就是地产开发时的土地资源,数据挖掘开发就是地产搭建盖楼。大数据主要的盈利模式也是围绕这两方面展开,一是通过直接“搬运”数据赚钱,二是通过数据加工分析盈利。“我们就像一个自来水厂一样,用户要你提供干净的自来水,对方可能是酒厂、饭店、饮料厂,他把你的水做成饮料或酒。”聚合数据就是一家主要依靠为客户提供数据盈利的公司,公司创始人左磊对其商业模式作了一个形象的比喻。在开发APP应用过程中,左磊发现客户对于数据的需求非常大,但他们本身却没有能力去做这些事情。聚合数据的主营业务,就是整合市面上有价值的数据源,从车辆违章信息、航班火车查询、全国加油站实时油价,到在线试题、电影、股票,做成标准化的API(应用程序编程接口),开放给开发者、企业及微信公众号用户等使用,为他们免除数据收集、维护等环节。简言之,聚合数据是一家数据源公司,充当的是数据“搬运工”的角色。在变现模式上,针对一些本身成本不高的服务,聚合数据会对用户实行免费,而对一些成本相对高的服务,会按照每个接口或服务的成本收取不同的费用。2016年,聚合数据光API接口一项营收就超过1000万元。聚合数据的盈利模式是数据买卖市场一个有代表性的类型。另一个代表性类型是,国内乃至全球第一家大数据交易所——贵阳大数据交易所,自2015年4月正式挂牌运营以来,仅用两年多时间,就实现了可交易数据总量超过150PB,内容涵盖政府、金融、交通等30大类领域,并于今年上半年实现正现金流,预计今年底累计交易流水将突破2亿元人民币。数据的“消化”和“利用”如果说搬运数据是秀肌肉的“体力活”,那么分析数据并提供解决方案就是拼智商的“脑力活”,相当于把收集来的数据“消化”“利用”好。直接售卖数据是比较底层的盈利方式,而对数据进行处理加工则在商业模式上具备更多的想象空间。数据分析可大致分为直接提供数据分析工具和输出解决方案两种模式。潘文说,数据分析工具通常可以实现情报挖掘、舆情分析、销售追踪、精准营销、个性化推荐、网站/APP分析等功能,收费方式采取按需购买,部分功能服务免费,部分功能服务收费。阿里云的“数加”平台就是典型的数据工具盈利模式。阿里云大数据事业部总监徐常亮表示,阿里云“数加”平台,承载着阿里巴巴集团、蚂蚁金服的数据,可提供一站式的数据计算、加工、处理等服务,用户不用自建计算平台。此外,基于“数加”平台,阿里云还提供数十款应用工具,覆盖数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。计算引擎之上,“数加”平台提供了最丰富的云端数据开发套件,包括数据集成、数据开发、调度系统、数据管理、运维视屏、数据质量、任务监控。在数据分析方面,通过移动数据分析产品,开发者可快速搭建日志采集、分析系统;通过“数加”平台BI报表产品,3分钟即可完成海量数据的分析报告。在机器学习方面,“数加”平台发布的机器学习工具,可基于海量数据实现对用户行为、行业走势、天气、交通等的预测。大数据公司百分点的展厅内有一面弧形墙,可以24小时实时更新数据资料和图谱。这面墙上有全网当日产品销售统计和热销产品榜单,每一个产品都有详情介绍。百分点研发总监苏海波介绍,5.5亿用户的“画像”汇总于此,包括购物偏好、网购金额变化趋势、阅读兴趣等。用户的任何网上行为都会成为大数据的一部分,经过筛选加入到用户的数据中。通过与百分点合作,商户可以根据用户消费偏好,定向推送商品;旅行社可以定向推送旅游行程信息和报价;新闻资讯APP则可以推送用户感兴趣的信息。在输出解决方案上,大数据还可以应用到医疗、教育、零售、通信等传统行业。通过大数据产生更多收益,节约成本,优化原有行业,衍生出新的商业模式。
Ⅳ “大数据”要这样用才赚钱!
“大数据”要这样用才赚钱!
大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
一石激起千层浪,国务院发布的2015 第50号文《促进大数据发展行动纲要》刷满了朋友圈,特别是其中提到了大力推动政府部门数据共享,稳步推动公共数据资源开放。2017年底前形成跨部门数据资源共享格局,到2018年实现统一共享平台全覆盖和数据共享及交换。2020年培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
众所周知,大数据商业价值巨大。但是中国大数据的商业价值还没有被充分挖掘。主要的困难在大数据的分散,具有价值的数据大部分集中在在政府内部,垄断国企业,以及互联网巨头之中。分散的数据无法帮助企业拿到具有价值的信息,无法实现大数据的商业变现。政府开放数据,以及大数据交易市场的建立是中国大数据商业价值应用的重中之重。
另外大数据的应用场景和大数据隐私问题,也是大数据商业应用功能的两大问题,不知道数据应用场景,就无法寻找具有价值的数据,就无让数据发挥作用,大数据的应用就会停留在解决数据采集、处理、存储等大数据1.0时代的低级阶段,无法实现大数据商业变现,无法激励企业进一步投资大数据,无法形成数据价值应用的生态循环。大数据隐私问题是所有企业不能回避的问题,到底何种数据可以进行交换,何种数据可以采集和变现,何种数据可以作为商品在市场流通,这些问题既影响个人隐私保护,又影响到企业购买数据产品的积极性,同时也影响了数据企业的发展。
中国大数据企业分为三类,一类是大数据技术公司,为企业提供大数据平台搭建,技术咨询,大数据计算和存储的产品,例如华为、亚信、浪潮等传统IT公司。一类是大数据服务公司,为企业提供基于大数据技术的服务、平台、产品。包括为企业搭建大数据挖掘工具,搜索引擎,分析引擎等大数据处理平台,大数据清洗和挖掘服务例如明略科技,ADMaster,百分点。最后一类是提供数据产品的大数据公司,他们拥有数据,加工生成具有价值的数据,为市场提供标准的数据产品。例如芝麻信用,TalkingData,九次方,星图数据等。
中国大数据市场的数据来源有四种,一种是通过网络爬虫采集的外部数据,大多数提供舆情分析的公司就是通过爬虫技术来进行数据采集的。例如海量数据。一种是提供SaaS服务得到的数据,例如Talkindata。另外一种是靠和运营商或政府合作,通过数据挖掘得到的数据,例如亚信和九次方。最后一种就是自身平台产生的数据(电商、旅游、媒体等互联网企业),包括BAT以及较大的一些互联网公司如360、当当、唯品会、聚美优品、携程、今日头条等。
一、开放数据的价值
开放数据就是政府向社会公布自己所拥有的,并经过脱敏的数据。包括天气数据、GPS数据、金融数据、教育数据、交通数据、能源数据、医疗数据、政府投资数据、农业数据等。这些原始数据本身并没有明显的商业价值,但经过一些公司加工之后,可以产生巨大的商业价值。
开放数据在美国有几千亿美金的市场,包括300亿美金的气象数据,900亿美金的GPS数据,上千亿美金的医疗数据。但政府开放的数据是原始数据,数据自身的商业价值并不大,需要专业的公司对数据进收集,清洗,挖掘,展现,从而形成具有商业价值的数据。在美国有很多公司是依靠加工政府开放数据而实现其商业价值的,例如处理天气数据的Zillow公司,the weather channel 公司,以及处理GPS数据的Garmin公司,它们的总市值已经超过了一百亿美金。
1 、政府开放数据的主要范围
a政府收集和制造的科学数据。例如天气数据,政府资助的医疗研究数据。这些数据都可以作为公共资源进行使用。
b 政府运行的数据,例如政府支出或大型项目运行数据。开放数据一方面可以增加民众对政府的信任,另一个方面可以给一些公司带来商业机遇。
c监管行业的数据。这些数据由企业提供给政府,并且经过政府二次加工。这些宏观数据对于产业规划,企业的投资战略都有很大影响。
2、 中国开放数据之路的挑战
a 国家对数据治理还没有完成。很多数据没有集中管理,还是处于信息孤岛状态,这些都是开放数据需要解决的问题。数据治理投资巨大,时间周期较长,都是巨大的挑战。
b 一些开放数据还不是电子形式。例如医疗数据和教育数据,在一些地区还处于纸质记录状态,没有形成电子档案。这些数据的电子化也是一个较大的挑战。
c 开放数据的脱敏和整合将是一项重大的挑战。特别是国有企业的数据,哪些数据可以公开,哪些数据需要脱敏,如何整合各个地方的数据,这些都是一个挑战
d 大数据服务公司和大数据人才匮乏。由于大数据市场刚刚开始,市场上缺少大数据人才和大数据服务公司,公开的数据短时间可能很难产生商业价值,这会影响政府和企业开放数据的积极性,不利于形成良性的大数据商业市场,会影响开放数据项目的持续发展。
3、有关开放数据一些建议
人类社会即将进入数字时代,开放数据将会是巨大的生产力。政府已经认识到了开放数据的价值,会持续推动政府和国企的数据开放。即使短时间内开放数据的投资看不到商业价值,但其未来经济价值会促使政府坚持开放数据的政策,持续进行投资。就像中国的高速公路,开放数据是另外一条信息高速公路,将数据转化为资产,转化为巨大的社会生产力,帮助企业实现更大的商业价值。
对于数据拥有者的政府,需要在保障公共安全和个人隐私的前提下,完成数据治理和数据整合,逐步向社会开放数据,并提高数据质量,公开面向所有个人和企业,有效利用政府科技资金,让利益相关企业和个人参与到开放数据项目中,鼓励创新,接受外部挑战,利用集体智慧,实现数据最优选择。
对于国有企业,需要在保护自身商业利益的前提下开放数据,帮助各自产业链企业的发展。同时开放数据也可以帮助其自身进行产业规划,进行有效投资,发现市场机会和风险,稳健经营,科学决策。企业可以利用开放数据提高生产效率,减少资源浪费,降低决策失误风险。产业链企业的良性发展,也会推动国企自身发展和进化,提高竞争力,优化企业经营,实现产业共赢。
对于企业家,开放数据将会作为新的资源,帮助企业进行发展,聚焦新的商业机遇,特别是在开放数据影响较大的保健行业,金融行业,能源行业,教育行业。数据服务公司可以利用开放数据,帮助消费者挖掘数据的潜在价值,为企业和政府提供具有价值的商业数据。对于经营中的公司,可以利用开放数据评价商业伙伴和潜在投资,通过提供数据来树立消费者的忠诚度,学会在透明的商业社会中进行经营,寻找公共或私人合作的机会,专注自身产品和客户,为消费者提供更好的产品和服务。
二、万亿的大数据市场
2014年的GDP中消费占比已经超过了50%,标志着中国经济正在向市场经济转型,消费占GDP 50%-70%是中等发达国家向市场经济过渡的一个表现,未来中国经济增长最大的引擎应该来源于消费,特别是个人消费。中国正在经历经济结构调整和城镇化,个人消费需求巨大,社会产品较为丰富,渠道也较为通畅,物流成本正在下降,运输能力正在提高。但是社会消费零售总额增加的还不够快,资源配置不平衡,社会整体消费水平还处于较低的水平。这些问题正在成为中国经济发展的难题,是企业和社会需要解决的问题。
大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。
大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。
网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。
1、大数据帮助制造业规划生产,降低资源浪费
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,
2、移动大数据帮助房地产开发商规划房地产开发
房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。
房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。
3、移动大数据帮助餐饮零售行业进行选址和顾客导流
餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。
移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。
4、传感器数据帮助产品进行故障诊断和预测
家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。
中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。
5、利用移动互联网位置信息进行精准营销
O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。
大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。
6、电商大数据将会帮助企业优化资源配置
电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。
电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。
7、移动大数据助力交通运输规划和管理
交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。
在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。
8、大数据帮助金融行业进行价值变现
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行(600036,股吧)利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。
中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行(000001,股吧)走到了金融行业的前面。
大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。大数据就是资产,能够帮助企业进行价值变现。大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
Ⅵ 互联网,网络,电脑,, 大数据类公司,是怎么赚钱的 是不是说,比如,,,大数据公司可以知
网站可以做广告、大数据公司可以靠卖资讯,给企业出主意
Ⅶ 如何利用数据赚钱
消费者分为懂行和不懂的小白,对于现在的社会,人们的交流变的更加的广泛,交往的朋友各行各业都有,因此有想买的东西时有些人看重的不在是越贵越好了。营销策划公司认为,对于那些外观上区别不大的商品来说,用数据去竞争市场是最为有效的一种竞争方式。
这是一辆与众不同的汽车,它拥有宽阔的车厢,那扇拱顶似的车门,那华丽的皮革...你感到了吗?这是一辆多么美丽的车,这辆车的售价某元。
气缸容积6749毫升,排量6.7公升,v-12前置发动机,缸径92.0毫米,总长度(英寸)202.8,总宽度(英寸)78.2...这辆车的售价某元。
手机或者电脑是生活中的必需品,你买手机或者电脑的时候是选择外观品牌还是实际参数呢?反正小编是选择参数,虽然在价格上差不多的产品但是在参数上却很大,毕竟很多品牌手机在刚出来的时候价格很高很高的,比如说一个1500块的手机在两年后将要退出市场,就算是出厂价格大约也会在八百多附近!天啊价格相差一半还要多,这是因为低价销售处理库存吗?答案不是,处理库存价格会在三百到五百之间,这是什么原因造成的呢?其实在开始的时候会有大量的宣传,其成本也就高了,但是在后期主要推出的产品不是这个了成本也降下来了,最后商品已经停产了,不再打算销售了,那么就亏本处理了。
品牌营销用数据说话是真实有效的,特别是在那些电子产品上外观差距不大的时候,数据就能够展现出商品的优点,与其它产品的不同,就像手机店在推广产品的时候永远都是一个价格然后就是手机参数,但是在超市中永远都是只有价格,什么都没有,用参数竞争是市场中使用的一种竞争方式,也是一种策略,当你的商品数据比别更高的时候品牌在市场中的竞争力就会更大。
Ⅷ 大数据怎么赚钱
首先要确定自己有的“大数据”是什么数据,大到怎样的量级,其中包含的数据元素有多少版;
其次找到自己拥有权的数据本身的商业属性,找到需要这些数据的用户,并确定他们对这些数据需要是否刚性,以及调研可以为使用这些数据的用户带来哪些价值或者改善;
最后就是设计一套运营模式,让这些数据变现。包括可以一次性的出售,这基本上不会有太多价值;更好的方式是数据动态更新,提供各种数据之间关联分析和目标组合,分别按照不同用户需要持续提供,也就可以长期的赚钱了。
市场上多数大数据本身并非真正的大数据,只是一部分数据资料而已!
Ⅸ 大数据公司通过什么赚钱
根据个人理解,大数据公司赚钱分为三个等级
1. 直接出售数据: 包括脱敏的各种交易、回操作、用户信息;互联网抓答取的公开信息
2. 对数据进行结构化分析后出售: 各种舆情监测,广告投放,传播分析等
3. 根据批量结构化后信息数据进行建模: 用于个性化推荐,走势预测等
中介公司大概能做第一个级别的吧。
当然,后面还有人工智能,只是目前依靠这个赚钱的公司还没看到。
Ⅹ 数据如何赚钱
现在是大数据时代,如果有海量的数据,而且数据是有意义的,总能通过大数据分析来得到一些有价值的信息/知识。
利用数据赚钱,一种方案是直接卖数据,让别人去分析。一种是分析出结果来,再卖分析结果。还有一种是利用数据吸引人来,通过流量赚钱。
直接卖数据一种是通过API卖,每次只能给一小部分数据;还有一种是海量数据卖。后者可能会带来数据资产转移的后果,卖了一次就没法卖了。可以考虑UZER.ME大数据安全共享解决方案。