① 数据分析师的未来前景如何
随着大数据时代的到来,各类型公司对数据相关岗位的需求持续攀升。
据统计目前世界500强企业中,有90%以上都建立了数据分析部门。IBM、微软、Google等知名公司都积极投资数据业务,建立数据部门,培养数据分析团队。
各国政府和越来越多的企业意识到数据和信息已经成为企业的智力资产和资源,数据的分析和处理能力正在成为日益倚重的技术手段。
2
数据都已经开始扮演 越来越重要的“角色”
在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括 销售、市场、运营、策划、产品等等前端 的职位都需要通过数据分析来帮助自己的工作,甚至连后台的 财务、法务、人事 等也开始需要通过数据分析来提升效率。
可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个 时候数据分析已经成为工作的必要条件。
1)这个行业在未来一段时间都会处于上升期
上升的同时但也并存着挑战,因为未来的趋势是“+数据分析”。
什么是“+数据分析”呢?就是数据分析越来越成为各个职业的基本技能,各个职业上的从业人员都会开始学习数据分析,从而有了: 财务+数据分析 加分 ;
运营+数据分析 加分; 产品+数据分析 加分;甚至还有 HR+数据分析 加分。所以,我在想也许五年后说不定就没有数据分析师这个职位了,因为它就好像PPT一样成为了每个人的必备技能。
大家总没有见过“PPT制作师”这个岗位吧?
2)数据分析师越有经验越吃香
对于大多数人而言,30岁之后人的精力和创造力会逐步缩水,但是经验的优势会逐步显现。
所以对于不少程序员来说,到了一定岁数不到管理层就会略显尴尬。而数据分析师因为其商业属性,如果你善于总结,随着经验的积累,你会发现你的经验公式可以适用于很多工作。
3 数据分析师的成长路线
初级数据分析师
对于初级分析师来说,工作主要是一些辅助性的数据清洗、指标设计、报表制作、可视化看板建设等基础性工作
中级数据分析师
中级数据分析师在初级数据分析师的基础上,要能够可以在业务发展过程中,给出一定的建议和指导,特点是可以针对各种主题做专项分析报告
数据分析专家/数据团队leader
在中级数据分析师之后,就可以开始考虑是要继续走专家线,还是往管理线发展了。
数据分析专家与中级分析师最大的区别是,业务经验更加丰富且分析能力更广更深,专家需要能够指导乃至引领业务的发展,对业务做出明显的改进。
在35岁时,如果你的能力能够达到数据分析专家的程度,基本不需要担心青春饭的问题了,反之,35岁时,如果还在做初级数据分析师的工作,那淘汰自然也是必然的。
数据分析的作用(目标)是通过分析数据给出改进意见来帮助公司的产品获得更多用户,或订单。
这就需要数据分析师持续不断的努力,运用行业经验,新的技能,新的思路来分析数据,持续改进产品,这就需要持续学习!
最后,加油!为每一个奋斗不甘于现状的你~
② 大数据毕业后去什么岗位就业
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
工作岗位列举几个热门:
初级大数据离线处理,薪资10000-13000;
Spark开发工程师,薪资14000-16000;
Python爬虫工程师,薪资16000-20000;
大数据开发工程师,薪资20000+。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。
祝你学有所成,望采纳。
③ 大数据分析有哪些就业方向
一、偏向产品和运营,更加注重业务
比如数据分析/数据运营/商业分析,主要工作包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。这类岗位的职位描述一般是:
负责和支撑各部门相关的报表;建立和优化指标体系;监控数据的波动和异常,找出问题;优化和驱动业务,推动数据化运营;找出可增长的市场或产品优化空间;输出专题分析报告。
需要掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,了解一些Python编程,足够完成大部分任务。
二、更注重数据挖掘技术,门槛较高
比如数据挖掘工程师/算法专家,数据挖掘工程师,往后发展,称为算法专家。要求更高的统计学能力、数理能力以及编程技巧,需要扎实的算法能力和代码能力。
除了掌握算法,必须精通SQL/Hive,需要编程能力,Python、R、Scala/Java至少掌握一种,往往也要求Hadoop/Spark的工程实践经验。因为要求高,所以平均薪资高于数据分析师。
关于大数据分析有哪些就业方向,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
④ 数据分析师未来的就业方向有哪些
数据分析师:偏向商业化的数据分析,运营广告等活动效果分析,销售额或利润预测,用户特征描述等,需要较好的统计知识,需要懂1-2门数据分析工具如SAS、R等;
咨询顾问:面向客户,为客户提供数据抓取、数据分析、出数据报表、改进建议落实等咨询服务,需要有较好的沟通能力,需要懂1-2门数据分析工具如SAS、R等(咨询顾问其实也分技术和非技术,技术类的主要是为客户搭建数据平台)
数据产品经理:一般是互联网公司独有,数据量大的公司会有自己的数据产品,如阿里巴巴的数据魔方等,主要是针对数据产品从产品立项、提开发需求、跟进产品开发、测试一直到产品上线等工作(相对来说并不需要对从业者要求很高的数据分析或统计能力,属于目前市场上为数不多但高工资的职位)。
⑤ 数据分析师都有哪些发展方向
要说现在什么工作赚钱的同时还比较有逼格,数据分析师可以说是其中之一。数据分析师算得上是一个新的职业,是伴随着大数据的不断发展而诞生的一个职业。做为一名数据分析师,主要的工作内容就是对大量数据进行及时准确的分析和整理,然后得出结论,进而对公司企业的发展以及决策提供帮助,不仅高薪,同时还比较的高端,属于互联网高科技行业。那么,数据分析师都有哪些发展方向呢?
1.业务方向
一般来说大家在很多招聘网站搜寻数据分析的时候,会发现数据分析的业务方向有两种,一种就是辅助业务的数据分析职位。另一种就是数据分析师职位。辅助业务的数据分析职位在零售业职位中比较多,并且数据分析师对业务必须熟练,同时对自己所面对的业务有很长时间的积淀和理解,这样就能快速的使用数据分析去发现业务流程中存在的问题,通过提出针对问题的解决方案去解决这些问题。由此可见,分析数据支撑着整个商业的逻辑。辅助业务的数据分析师细分职业有市场调查、行业分析、经营分析三类数据。而业务方向中的数据分析师职位一般都是比较专业的,这种专业是具体怎么体现出来的呢?比如产品数据分析师、运营数据分析师和销售数据分析师等等。所以业务方面的数据分析师都是比较专业化的。
2.技术方向
一般来说,数据分析师在技术方面上主要指的是数据挖掘方向,一般来说是分为三种类型。第一种就是数据挖掘工程师、数据库工程师、数据开发工程师。而数据分析师在互联网和金融行业中的岗位是比较多的,当然,在技术方向的数据分析师的工资要比业务方面的数据分析师岗位的工资要高。不过,如果做到了管理层面,业务岗要比技术岗的工资要高。
严格来说,数据分析师的发展方向有很多,以上两种只是比较具有代表性,同时也是大多数从业者的选择。无论是业务方向的发展还是技术方向的发展,都各有优劣,但从整体上来说,数据分析行业做的最后所获得的薪资水平还是非常高的,基本上远高于其它行业的同等级别的从业者,如果大家有志向的话,可以选择从事数据分析行业哦。
⑥ 考了数据分析师可以做什么工作
数据分析师是从事数据分析类工作的职业证书,考了数据分析师后,一般就是做数据分析的工作的。
现在各行各业对数据分析师的需求是挺大的,在北京、上海、杭州、深圳、广州招聘数据分析相关岗位是比较多的,而且薪资待遇不错,在众多的行业中,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
我同事之前也是在他们这里考的,现在是在互联网做用户分析,发展的还是可以的。
⑦ 数据分析行业就业方向有哪些
数据分析行业就业三大方向指的是:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职业:ETL研发、Hadoop开发、可视化(前端展现)工具开发、信息架构开发、数据仓库研究、OLAP开发、数据科学研究、数据预测(数据挖掘)分析、企业数据管理、数据安全研究。
全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000!
根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
⑧ 数据分析师都有哪些发展方向
很多小伙伴都想转行成为数据分析师,入行容易,但重要的需要确定未来的一个发展方向,不能盲目入行。下面小聚给大家分享几种数据分析师的发展方向,大家可以参考一下,首先确定好自己的目标。
业务数据分析师:技能上需要会使用Excel、pythonl和SQL,因为业务数据分析师主要工作是把数据和业务结合的,用数据辅助业务增长,对于技术方面的要求一般,业务知识才是重点。
数据挖掘工程师:偏向于技术一些,需要熟练运用linux操作系统、Hadoop、HDFS、MapRece、Hive和Hbase等工具,能够进行基于Spark平台的大数据分析和机器学习应用。同时对数据挖掘的方法要求也很高,比如:技术的回归、分类和聚类分析等。
人工智能工程师:掌握机器学习、深度学习;能够熟练进行数据清洗,可以完成缺失值填补、异常值处理等;精通数据可视化,例如箱线图、动态图等;同时还必须掌握人工智能在各行业的应用场景。
以上就是小编整理的数据分析的三类职业发展,具体细分的话还有很多方向,大家可以参考招聘网站上的数据分析师的岗位要求。确定了发展方向,即可知道你的工作重点是什么。
⑨ 数据分析师的就业前景如何
可以先来看几个数据,据猎聘数据显示,数据分析师的平均薪资在20k+,应届生的平均月薪都在10k+。目前数据分析能力已成为各行业必备的通用能力。研究显示,有数据分析能力的人工资比一般人多30%,而没有数据分析能力的人失业率是一般人的2倍。
数据分析师不仅在薪资上有巨大优势,这个职位在未来将会持续有巨大的缺口。据麦肯锡咨询权威预测2025年中国将需数据人才高达220万。
初级数据分析师如果选择技术方向发展,可选择的职位也有很多,例如算法工程师、大数据开发、数据科学家等等。对这些岗位的职责,可以参考下列的解释。
1、算法工程师
运用数理统计知识、编程和业务思维建立数学模型,是当之无愧的产品灵魂。
2、数据开发工程师
数据工程师属于技术岗,负责搭建数据库、处理数据、维护数据安全等工作,主要是服务于数据的使用者,比如上文中的数据分析师、数据产品经理以及数据建模师。
3、数据科学家
数据科学家属于综合性人才,集数据分析能力(>数据分析师)、统计学基础、业务能力(>数据产品)、算法(>算法工程师)与沟通能力于一身。这类人才属于数据分析行业中的顶配,各方面的能力都超一流,不过这类人才相当稀有,在行业中基本是可遇而不可求。
最后说完了数据分析师的职业发展方向,再回归到最重要的行业本质吧。选择一个行业或职位最本质的因素就是赛道。这个道理很简单,人需要在一个天花板不断上升的行业,个人职业的发展的天花板才能跟着往上走。我们都知道只有在路很宽,人不挤的赛道上才能够跑得快,也只有在一个资本都涌入的市场上才挣到更多钱。
综上所述,数据分析师的就业前景是非常好的,如果你想要成为一名优秀的数据分析师,要先找到自己的方向,确立一个职业目标,再逐步掌握数据分析师的必备技能,在软件的基础操作上不断提升自己的应用。