1. 且慢说“大数据”的无所不能
且慢说“大数据”的无所不能
“大数据”是个好东西,是科学的前沿,值得我们认真积极关注、推介和参与,但它绝不是哈利波特,不会“一抓就灵”,不能包打天下和无所不能。
回头看看这些年的所谓产业“浪潮”新理念、新理论和新技术,一旦引入我国后,常是泡沫翻腾,真经并不多。去年是“云计算”,今年是“大数据”,官员、学者或媒体人嘴上不常换点国际流行的新词,都不好意思开口。
其实,“大数据”很简单,不神秘,以前无法处理的海量数据或没当做数据的东西(如你在超市逛逛或对那个营业员笑一笑),因计算机计算能力如“云计算”的进步,都可以分析出个子丑寅卯了,如很多人逛超市的路径与购物之间有数据关系,据此调整布局有利于销售,美国有超市把影碟与尿布放在一起,就是通过“大数据”分析发现,来为孩子买尿布的父母喜欢为自己带盘碟子。
但把“大数据”用做解决世界上最难处理的问题的全能办法,从管理城市到消除贫困,从制止恐怖袭击、疾病流行到拯救地球环境等,以为有了“大数据”,就没有解决不了的问题,这也是一种误解。人类的思想、个人的文化和行为模式、不同国家及社会的存在发展都非常复杂、曲折和独特,显然不能全部由计算机来“数字自己说话”。比如,近来欧美有人提倡用“大数据”分析人的日常行为模式和习惯,判断谁将要犯罪,以此帮助预防未来的犯罪,就引起了很大的争议和质疑,公众担心因司法程序缺失而受到莫名威胁。
其实,企图用一行行的代码和庞大数据库的“大数据”来解释和指导世间万物万象,很像此前企图用基因等生物密码来解释和调控人类的行为模式,看起来是客观中立的,但说到底,“大数据”再“大”,也不会“自己说话”,还是设计者、分析者和使用者在说了算。所以,“大数据”并不能使人们完全摆脱曲解、隔阂和错误的成见。
而且,数据的采集也会使“大数据”不中立和不全面,以至于不公正,如目前社交媒体等即时通讯是“大数据”分析的一个普遍信息源,那里无疑有许多信息可以挖掘,国外神话“大数据”的范例几乎都来源于此。但至少在我国现在和未来一段时间里,以此途径反映民情的某些“大数据”可能会忽视了“沉默的大多数”而失准。过分依赖和迷信“大数据”,难以避免对某一群体的“数据歧视”,可能会依据错误的成见作出重大的公共政策和商业决定。
更需指出的是,“大数据”的潜在负面效应不可忽视。无处不在的“大数据”使个人隐私无处藏身,甚至会引发更多问题。例如,最近,“大数据”被用来预测脸谱网用户极其敏感的个人信息,如性取向、种族、宗教和政治观点、性格特征、智力水平、快乐与否、成瘾药物使用、父母婚姻状况、年龄及性别等。这些高度敏感信息很可能会被雇主、房东、政府部门、教育机构及私营组织用来对个人实施歧视。
“大数据时代”的作者维克托说,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型。这话很有道理。但他认为,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。歌颂者说,这是维克托颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。可我们有疑:不问或不知“为什么”,我们还是人吗?
其实,维克托又新写了一本叫“删除”的书,讲述了大数据时代的信息取舍,说遗忘是一种美德。说白了,就是该记的记,该忘的忘。这就更加说明,无论到何时,其实都还是人在思考和“说话”,即使在“大数据时代”可以通过数据形式来部分表达。所以,把“大数据”提高到不恰当的高度,甚至魔幻化或泡沫化,对推广“大数据”技术及应用不仅无益,还会弄成一些新的神话,或许还有笑话。
2. 大数据存在哪些局限性
1、大数据不理解背景
人类的决策不是离散的事件,而是根植于时间序列和环境中。经过数百万年的进化,人类的大脑已经适应了这个现实。人们擅长讲故事,有很多原因,也有很多场景。数据分析不知道如何讲故事,也不知道思维是如何浮现的。即使在一本普通的小说中,这种想法也无法用数据分析来解释。
2、大数据将创造更大的干草垛
这个想法是由著名商业思想家Nassim Taleb提出的,他是《黑天鹅:如何应对不可知的未来》一书的作者。我们拥有的数据越多,我们就能发现更显著的统计相关性。很多这样的关系都是毫无意义的,在解决问题时还会让人误入歧途。随着越来越多的数据可用,作弊行为呈指数级增长。在大海捞针的过程中,我们要找的针埋得越来越深。大数据时代的一个特征是,“重大”发现的数量被数据扩张的噪音淹没了。
3、大数据不能解决大问题
如果你只是想分析哪些邮件产生了最多的竞选捐款,你可以做一个随机对照试验。但如果目标是在衰退期间刺激经济,你不会找到一个平行世界社会作为对照组。最好的刺激方案是什么?关于这个问题有很多争论,尽管数据泛滥,但据我所知,这场辩论中没有一个主要的辩手根据统计分析改变了立场。
4、大数据往往是一种趋势,而不是杰作
当大量的个人迅速对一种文化产品产生兴趣时,数据分析可以对这种趋势敏感。但是一些重要的(有利可图的)产品一开始就从数据中被丢弃了,仅仅是因为它们的怪癖不为人所知。
5、大数据掩盖了价值
“原始数据”的意义在于,它永远不可能是“原始的”;它总是根据一个人的倾向和价值观来构建的。数据分析的结果看似客观公正,但实际上,价值选择贯穿于从构建到解读的全过程。
3. 有关大数据的分析理念的有哪些内容
一、大数据的理念之:用全量代替样本
1841年埃德加·爱伦·坡发表了文学史上的第一部侦探小说《莫格街谋杀案》,尽管这部小说的解答有些欠抽,但不可否认,它开创了侦探小说的一种模式——“密室”,而这种模式被后来人所追随,以至于似乎没有写过这种类型小说的都不算是侦探小说作家。所谓的“密室”,就是在一个封闭的空间内犯下的凶案,终极目标就是解答出凶手的犯案方式以及如何从密室中逃脱。在一代又一代的侦探小说家的努力下,密室的难度越来越大,从正常人无法进入到所有人类都无法进入,直至正常情况下所有生物都无法进入。然而即便这样,如果严格来说的话,绝对的密室是不存在的,它肯定会有空隙,就算看起来密不透风也从微观的角度找到某些空隙。既然不可能达到绝对的封闭,只能使用相对的概念,对于正常人无法进入的空间都属于密室,否则整个侦探小说界就少了一个很重要的组成部分。
刚接触化学课的时候,接触到了纯净物和混合物的概念,与此同时也提到了,绝对的纯净物是不存在的,即使是再精确的提纯。于是,对于一种物质,只要没有提到存在杂质,默认按照纯净物来看待,否则就不仅仅是几道考试题的问题了,可能整个化学学科的研究都没法开展下去了。例如两种物质发生反应,如果按照实际情况都当作混合物看待,不断的纠结于各种杂质的问题,那就偏离了真正的研究方向。
举了上面两个貌似不相干的例子,想表达的观点就是,和多、少这类的相对概念一样,实际上全也是一个相对的概念,绝对的全也是不存在的。之所以这么说,主要有两方面的原因:
首先,当数据量超过一个范围之后,取得全部信息会很复杂,以至于可能根本是无法完成的任务。如果要获取一个学校所有学生的某个信息,这个很容易,只需要将全校的学生聚集起来一起获取,或者以班级为单位单独获取之后再进行汇总,因为一个学校不管有多大,学生人数都不会太大。而如果要获取全市所有人的某个信息呢,这似乎就是不可能的了:如果在大街上随机询问,对于那些不出门的宅男、宅女们的信息就没法获取;如果挨家挨户进行询问,对于那种经常不在家的就不太容易能遇到,而且那种无家可归的流浪汉的信息也没有办法获取;如果通过电话询问,也肯定有因为某种原因无非接电话的人,或者看到是
4. 大数据会给生活带来各方面的变化
大数据会给生活带来各方面的变化
“政府的决策要更多基于数据本身,信任数据本身,而不是对数据的直觉。我们不仅要对政府有期望,对自己也要有期望。目前赚钱的地点,赚取利润的地点发生变化。大数据时代,价值是通过数据流产生的。所有人都在设法建立一个新的平台,通过数据流动赚取价值。” 严谨的牛津大学教授维克托说。
数据是枯燥无味的,但是维克托却尽可能让数据赋予“人情味”。比如,这位严谨的学者在讲话中,多次提到“三岁半的儿子”。
他说,“我们使用大数据,但不会滥用大数据,我们应该携起手来建设安全保障措施,使人们,比如我三岁半的儿子或者其他人享有美好的未来。”
什么是大数据?它将如何改变我们的生活?在维克托的眼里,“大数据”似乎无所不能,它不仅能挣钱,还能治病、延长寿命、找寻“真爱”。
大数据的应用,将让寿命更长
记者:“大数据”时代已经来临,哪些应用是您在生活当中最常用的?
维克托:我觉得到2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。比如,我的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我都会通过手机得到警示。然后信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。
随着我年龄增大,我会很期待生活更长久,通过大数据的应用,会让我们的寿命更长。
记者:“大数据”时代看上去似乎无所不能,但它能否帮忙找到男(女)朋友吗?
维克托:这是一个非常有意思的问题,有了“大数据”的帮助,你找女朋友的成功性会高很多。这是很容易理解的。通过网络,你可以提供很多信息,比如“你是谁”,“你想要找什么样的男(女)朋友”。在网络上,很多人也是这么做的。通过网络,你就会找到最配的那一个。
在实际生活中,你碰到的只是两个人或者五个人,然后聊两句,在网上你可以和五百万或者一千万人聊天。这样找到合适的男(女)朋友的概率大很多。
我有一个哈佛大学的同事,就是通过网络找到伴侣,相爱、结婚、生子。这就表明大数据能够为我们的爱带来价值。
记者:对中国的大数据行业有什么建议?
维克托:在大数据时代下,数据也会成为“基础设施”,政府要进一步补录数据库。举例说,政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有这样的服务,为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务完全基于政府提供的数据库。这可以帮助个人、消费者更好地预测行程,这种类型的创新,就是来源于公共的大数据。政府可以在这方面多下功夫。
5. 应该具备什么样的大数据思想和大数据伦理
大数据思维比起传统的思维,更加不重视精确性也就是不再强调标准、强调精准无误差这与第一点也有关,因为以往的人们受条件的限制,会采用抽样的方法研究局部,然后推测整体,如果局部计算不精确,那么放到整体他的错误就会更加放大,从而严重偏离事实真相。而如今大数据技术更侧重于收集整体统一的数据进行分析,不再划分出一个一个的局部进行精准计算去推测整体。没有从抽样的错误会放大到整体的这一种可能,所以也就不追求精准性。反之,追求的是多样性,正如哲学家所说的,存在即合理,当所有数据都全部被用来做分析原始材料,那也就不需要追求精细,它可以容纳信息内容的多样性和信息结构的多样性,这是一种更加包容的新思维。
第三,大数据思维更强调相关性,而不是以往的因果关系。在传统思维和科学方法中人们往往致力于寻找某一事物的标准定理,或者是几个事物之间的简单线性关系。所以以往的事物都可以由这个量推断到前后的量,形成因果关系
6. 对大数据的理解与思考
对大数据的理解与思考
首先,大数据的到来,对人们的观念将带来深远的影响。
我们以前习惯认为:找到现象背后的原因,比清楚现象是什么更重要。通过“塔吉特怀孕预测”的例子可以看到,通过关联分析、聚类分析等数据挖掘方法,大家很容易找到事物之间的关系。但是,这些大数据分析结果,并不会直接告诉我们,事物之间为什么存在这些关系。在不清楚为什么存在这些关系之前,又的确看到了这些关系带来了价值;所以,在大数据应用领域就需要改变以前的思考方。即:先找到“是什么”再去找“为什么”;清楚是什么,与搞清楚为什么同等重要。
手工统计时代,出于收集全部数据非常困难或代价巨大的原因,很多数据分析都是采用抽样数据;但是,现在不同了,随着信息技术的发展,现在很多领域都能够方便的收集到全量数据。诸如无纸化办公的兴起、信息系统的使用、电子商务的发展等等,都为收集全量数据提供了便捷的条件。那么,这时候数据的“样本”=“全体数据”。这相对以前来说,也是革命性的影响。
在抽样分析时代,个别样本的质量甚至决定结果的质量。在大数据时代,这也变了,可以允许个别数据的不精确,甚至错误。举个简单例子来说明这个道理,比如在温室大棚里放一只温度计,当这只温度计有问题时,整个温度都是不准确的。若在大棚里均匀分布十几只温度计,其中一只有问题,对温室大棚温度的统计结果无碍大事,基本可以忽略其影响。
其次,大数据应用,影响商业变革和社会进步。
大数据应用正改变着企业的业务发展方式。比如:京东、天猫通过对交易数据的“二次利用”,寻找目标客户、定向推荐商品。也正是这些数据的二次利用给他们提供了大量价值,促进了这些企业的发展,推动着他们在营销、供应链与客户服务等领域的管理变革。同时,交易数据并不因为二次利用,而降低其价值;这也是,大数据应用与传统资源使用不同的地方。
数据的“混搭”分析,推动着商业发展和社会的进步。比如历史天气信息与航班误点信息,这两个不同领域的信息一块儿分析,便可以推算未来几天航班的误点率。再比如,通过神经中枢肿瘤患病率和手机使用时间长短之间的大数据关联分析,来研究神经中枢肿瘤患病率是否与手机使用时间长短有关系等等。
大数据的应用,也促生了很多商业机会。随着大数据时代的到来,形成了很多大数据拥有公司,以及大数据技术公司;数据与技术的结合变促生了很多大数据应用,因此带来了很多商业机会。例如,现在很多商业银行对自己大量客户的交易信息分析,规划新的理财产品,与其他商家合作,联合搞定向促销等等。
再次,大数据时代不再有个人隐私,将形成新的信息安全机制。
现在还经常听到诸如某某窥探我的隐私之类的话语,但是,在大数据时代几乎没有个人隐私,这不是骇人听闻。因为,现在微博、搜索引擎、社交网络、电商购物,已经成了我们生活中必不可少的一部分。根据每个人在互联网上留下的痕迹,通过大数据分析,很容易分析出一个人的爱好、习惯、性格、癖好等等。所以,大家都被“第三只眼”实时监控着,在大数据时代,几乎没有个人隐私!
没有个人隐私,是否就代表每个人可以随便传播别人隐私了呢?答案当然是否定的。因为传播别人隐私是不道德的,甚至是违法的。所以,现在新的信息安全规则正在重新定位,其中一个基调是:让数据使用者承担责任,不能滥用别人的隐私;我个人感觉这也比较合理。
总结
大数据只是“新概念”,并不是“新事物”。过去数据就存在,只是我们没有收集这些数据。但是,现在收集了这些数据,这个世界变得不一样了;它更新了人们过去对数据应用的认识,加快了商业和社会发展的新陈代谢,从中也让大家也看到了很多机会。大数据时代,已经到来。极目远眺,也看不到尽头。
7. 深扒大数据:关于用户隐私以及企业价值
深扒大数据:关于用户隐私以及企业价值
如今,业界和学术界一直在讨论一个词,那就是大数据。不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等等事情仅仅只是个开始,对大多数公司来说,大数据仍有很强的神秘色彩。于是,在我们还没有完全搞明白如何运用大数据进行挖掘时,各种过于神化大数据的舆论就已经不绝于耳了。当然,也有很多人直接批判大数据或大数据营销给我们造成的隐私威胁。也有很多人根本没有搞清楚什么是大数据,到底有什么价值。
于是,站在客观的角度,围绕下面几个问题与大家分享有关大数据的几个观点,也扒扒大数据的那些事儿:
1、大数据营销和个人隐私泄露究竟有无因果和逻辑关系?
2、大数据营销到底能带给企业什么样的价值?到底能带给用户什么价值?用户是否全盘否定或反感大数据营销?
3、如何正确看待大数据?如何看待大数据和传统调查方法或统计学的关系?
4、大数据营销究竟面临什么样的挑战?
一、大数据的迅猛发展与数据隐私的忧虑相伴而生
社交媒体的出现,让用户数据的分享数量达到了难以估量的程度。而如今,社交媒体的种类有增无减,智能手机的更大普及,又让更多用户转移到移动互联网,从而又进一步贡献更多数据和内容。这样的数据增量让全球社交媒体的收入大涨,仅根据咨询公司Gartner2012年的研究结果显示,2012年全球社交媒体收入估计达到169亿美元。
一边是社交媒体因为大数据的盆钵满载,另一方面则是用户不断毫无保留的将个人信息交给互联网,这些信息包括年龄、性别、地域、生活状态、态度、行踪、兴趣爱好、消费行为、健康状况甚至是性取向等。一时间,针对海量用户信息的大数据挖掘、大数据分析、大数据精准营销、广告精准投放等等迅速被各大公司提上日程。
比如,一个发生在美国的真实故事就会告诉我们,利用数据挖掘如何掌握我们的行踪。一个美国家庭收到了一家商场投送的关于孕妇用品的促销劵,促销劵很明显是给给家中那位16岁女孩的。女孩的父亲很生气,并找商场讨说法。但几天后,这位父亲发现,16岁的女儿真怀孕了。而商场之所以未卜先知,正是通过若干商品的大量消费数据来预估顾客的怀孕情况。
类似的大数据挖掘和营销事件在今天更多的发生,尤其是社交媒体产生大量数据后。于是,许多人对个人隐私数据开始担忧,开始批判大数据精准营销侵犯了个人隐私,忧虑我们进入了大数据失控的时代,并将原因更多归结于社交媒体。
二、大数据营销和个人隐私泄露之间不能完全划等号!逻辑关系不成立!
如果客观的分析一下上述问题就会发现,这是一个难以分说的鸡生蛋还是蛋生鸡的问题。一味地批判大数据分析对个人用户数据的泄露或滥用是不客观的。
因为,社交媒体的本质在于分享和传播,社交媒体的出现的确满足了人们分享个人信息、晒各种数据的欲望,让人们在过去无声无息的生活中突然转移到了可以让全世界看到自己的平台上来。人们从而达到了内心的满足感和存在感。因此,单从个体的背后心理来考虑,社交媒体对他们来说是有益的,他们不认为自己贡献的是不可告人的秘密,既然分享出来,那一定是希望或允许别人看到的。因此,这是一种无形的默许的交易,用户乐意把自己的各种琐碎细节暴露于社交媒体,而对社交媒体上杂乱无章的海量用户数据进行有序的分类和分析也没有什么不妥。
当然,如果社交媒体平台随意滥用或泄露用户的后台数据,比如个人联系方式、家庭住址、银行等极为隐秘的信息,这的确是赤裸的侵犯隐私的行为,极其没有道德,必须要受到谴责和法律制裁。
但目前,许多大数据精准营销的前提是对用户在互联网上留下的公开显在的信息进行算法归类和内容分析,从而对海量用户进行人群划分,或者对小众群体进一步细分化,甚至达到某种程度上针对单个人的个性化定制,最终达到精准推送广告或有针对性推出营销活动的目的。
所以,从这个角度来看,大数据精准营销与个人主动分享和传播到网络上的信息数据之间并没有矛盾。人们起初或许会惊讶:为什么他们知道我想买什么?为什么他们知道我的需求?但随着“猜透心思”的推送行为让人们的生活越来越便利时,比如省去大量搜索、查找和对比产品或服务的时间,他们可能会十分习惯并依赖这种精准性,并不会在意他们本来就随意分享到网络上的杂乱信息被如何挖掘和利用。
因此,用户发布和分享的信息是否为隐私,在用户分享信息之前就做过慎重考量和筛选。这一点非常重要,这是侵犯隐私与否的界限。那些被用户选择为不适合发布或不希望别人知道的信息就是用户认为的隐私,而那些已经公开发布到社交媒体或网络上的信息则被用户认为是可以传播的。
所以,普通的对海量公开信息的分析、挖掘、归类,从而进行精准营销的大数据行为不能一味被骂成是对用户利益的损害。而那些对用户存储在某些位置、不希望被他人了解的信息(私人存储的信息)如果被别有用心的人泄露或利用,那这就是隐私侵犯行为。但这就不能归罪于大数据,而应质问存贮平台的安全性问题。
因此,我们不能过分解读大数据精准营销。其实,问题的本质在于,人们是否真的在意杂乱信息的去向(涉及到分享信息的背后心理和动机)?以及大数据营销是否真的触碰了人们不可告人的秘密或底线(需要对秘密和底线重新定义)?因为,如果人们默认分享的都是公开的,那么侵犯隐私的概念就是不成立的。如果人们有不希望别人知道的信息,也不会贸然在网络上分享和传播。
三、大数据营销究竟会给企业和用户带来什么价值?
讨论完上面的问题之后,我们是否应该诚恳对待大数据精准营销这件事?那么大数据营销究竟对于企业和用户两方面来说,都有什么样的价值?
1、对于企业的价值
让我们先看一个国外案例:
我们都知道美剧《纸牌屋》,提到《纸牌屋》的成功,最大的功劳便是大数据分析。因此,《纸牌屋》几乎成了大数据营销的经典案例,也是美国Netflix公司基于用户信息挖掘来决定内容生产的成功尝试。
Netflix的订阅用户达到了3000万左右,而大多数用户的观影都与精准推荐系统有关。Netflix会定时收集并分析用户观看电影或电视剧的行为,比如根据用户对电影的评分、用户的分享行为、用户的观影记录等信息去分析用户的收看习惯,从而推断用户喜欢什么样的影视剧,喜欢什么样的风格,喜欢什么样的导演和演员。在此基础上利用算法对用户感兴趣的视频进行推荐排序,直到用户找到最喜欢的影视剧。《纸牌屋》的导演和主演就是Netflix挖掘用户信息后的预测出来的。
那我们再看一个国内案例:
我们都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥资5.86亿入股新浪微博。除了网络上各大媒体分析的,认为阿里巴巴希望打造生态圈、强化流量入口、挑战腾讯等等原因之外,还有一个重要原因或许就是大数据营销的战略。
如今各大互联网大佬都在跑马圈地,圈住用户,谁能圈住用户,让用户在其平台上活跃,谁就掌握了用户的大量信息(包括显在的前台信息和隐藏的后台信息)。新浪微博在中国有几亿用户,这个量十分庞大,但如果新浪不能把这些用户产生的信息合理的利用,那么这些资源就是巨大的浪费。我们再看阿里巴巴,中国最大电商平台,它有产品,但是却没有完整的用户日常生活行为信息,只有购买信息,但这些购买信息不足以了解人群特点和喜好。所以,只有跟新浪微博合作,掌握大量用户的行为信息,从而对其分类,找到不同人群甚至不同个体的喜好、偏好、兴趣、爱好、习惯、传播习惯、分享路径等等,那么就能实现精准营销,甚至还可以通过不同用户的信息传播规律,而制定产品的最佳品牌传播途径。这是一座巨大的金矿。
新浪微博和阿里巴巴合作后,微博上出现了一些产品推荐信息,同时新浪微博已经推出支付功能。可以想象:未来你在微博上看到相关推荐的产品,恰好是你喜欢的产品,那么你就可以直接在微博上实现支付和购买。从而新浪微博和阿里巴巴各取所需,共享收益。当然,这是我个人的观察和分析,不过阿里巴巴的大数据战略也很明显了。
2、对于用户的价值
上述两个例子说的都是大数据带给企业的价值,那么,大数据营销对于用户来说,到底有没有价值?用户是否十分反感精准营销?让我们再来看看一个新的调查数据:
中国传媒大学国家广告研究院刚刚发布一份《2014中美移动互联网发展报告》,这份调查报告对比了中美两国用户移动互联网的使用习惯,以及移动用户对于移动广告的态度。
调查显示,最可能得到智能终端用户回应的广告内容为:(1)与用户要购买物品相关的广告(2)与要购买物品相关的优惠券(3)搞笑的广告(4)与用户最喜爱品牌相关的广告(5)与用户在线上访问过网站或使用过的应用相关的广告(6)与最近线上购物相关的广告(7)与用户所在场所相关的广告(8)与最近收听、收看的广播/电视相关的广告。(占比>=20%)
从这些数据我们可以看出,在8个结果中,有6个都是跟大数据精准营销扯上关系的。比如,与用户要购买物品相关的广告,更能引起用户的回应或互动。如何理解?大数据营销的前提就是计算并推测用户的真实需求,看用户需要购买什么相关产品,然后给用户直接推送用户想要的、喜欢的,做到了精准到达。那么用户呢?用户乐意对这样的推动广告或产品做出回应,因为这些广告少了对用户的打扰,并且让用户费劲心思对对比或货比三家后才购买的决策过程降低,节省了时间,让用户直接找到内心真正所需的产品或服务。
所以,这样的结果就表明,大数据精准营销并不是完全都会让用户反感,而是看你猜透用户心思的程度。因此,如果你推送的内容和用户想要购买的物品相关,与用户最喜爱的品牌相关等等。那么这种精准挖掘并不会受到用户的反感,反而会给用户带来便利。
四、不要过分迷信大数据;大数据的实质究竟是什么?
看了上面的分析,或许你会认为大数据分析真是无所不能。但是,我们不能过分迷信大数据,于是接下来的问题就产生了。
1、大数据分析和传统统计学方法有什么样的关系?
大数据所遵从的是:以大量数据,甚至所有数据为基础,然后用算法去计算分析,从而更精准的找到各个因素之间的相关关系(不是因果关系),以发现数据之间的规律。
那我们看看传统的统计学方法,统计分析学解决的就是如何通过选取少量的样本,通过对样本的分析,然后推断整体的趋势和规律。所以,用的是概率。一般会规定在90%、95%或98%的置信度(精确度)下最大程度推断总体。如果目的明确,样本选取得当,操作科学,那么不需要大量数据就能分析出规律,从而推断出总体的规律,并且可以发现不同因素之间的因果关系。比如,抽样方法确定后,就可以确定样本数量,如果抽样得当,那么样本的数量跟总体的数量之间没有太多直接关系。
举个不恰当的例子以供理解:假设选取1000个样本,推断的规律是A,选取2000个样本,同样呈现出A规律,选取3000也差不多这样。那么,我们实际上科学选取1000多个样本就可以达到目的了。所以,传统的抽样和统计方法,在最大程度上解决了成本问题,虽然会有误差,但仍可以发现的显在规律。
所以,从这个角度来说,大数据分析最终得到的结果很可能跟传统统计学方法分析的结果类似,只不过把原来的小样本变成了大样本分析。虽然大数据分析理论上是更精准,也可以弥补传统误差的缺陷,但准确度未必像我们想象的那样提高非常多(因为大数据分析会严重受到数据源的影响)。另外,也不一定能发现更多新规律。如果是这样的话,我们不禁要问,大数据究竟是为什么而存在?
另外,在传统的统计学分析当中,比如对市场情况的分析,我们要结合实际的环境和背景来解读数据和分析数据,我们并不把数据当成唯一的和万能的指引。所以,这里面就存在人根据经验和实际情况进行数据分析的过程,而人参与分析的能力是很重要的。
2、什么样的事情是大数据做不到的,而传统的调查分析方法却可以做到?
大数据营销的前提是大数据分析,而大数据分析是基于算法的,是计算机固化的模式。也就是说,原来由人对数据分析的那部分工作,现在我们把它约定到算法里了。并且,大数据精准营销是对用户产生的网络浏览数据、分享数据、搜索数据等等行为信息进行分析,从而对人群或事物进行分类,并由此推测人的偏好、兴趣等。
但是,偏好不等于真实需求,点击不代表一定喜欢。一个人今天在社交媒体上说:“这个产品不错”,就认为他一定喜欢或一定需要这个产品吗?
机器可以对行为分类,但却不能真正探测到人的心理和真实需求。那么,对于人的真实心理和需求的探测,我们如何做到?这时候,传统的市场调查和分析方法是不可取代的。比如,深度访谈法,比如焦点小组访谈法,投射法等等。这些方法都可以在最大程度上,从心理学的角度去分析和发现,人真正的欲望和本质需求。所以,今天很多大的广告公司、营销公司,他们仍然采用这样传统的方法去了解表面数据背后的故事和原因。而这些故事和原因,是算法目前没办法做到的,必须由人来完成。人和人的交流才能探测人的内心。
从这个角度来说,大数据并不是万能的,也不能被一味神话,我们必须清晰的认识到它的实质,它能用来干什么,不能用来干什么。我们可以这样理解:人对数据的计算和分析工作如今可能会被机器替代,但是,人的另一部分工作(探测人内心的能力)没办法被算法替代。
比如,前两年我曾报道过《写书都可以用算法实现自动化了,拿什么挽救出版》这样的新技术,据称目前亚马逊上大量图书都是被算法写出来的,算法会根据人写书的逻辑思路来组织语言。但是,这些书却不能弥补人类情感的缺失,不能表达出社会背景和作者所处环境带来的情感波动等等。
五、大数据分析或大数据营销面临的真正挑战是什么?
1、数据冗余问题,有没有必要用这么多数据?
数据源问题,数据质量有无保障,是否是真正所需?
大数据分析一直被人称颂的优点就是:海量数据的运用。但是,数据是不是越多越好?如何筛选这些数据?如何找到有价值和有用的数据?数据的庞大和冗余会对大数据分析造成什么样的影响?
对于大数据而言,巨量的数据来源是分析准确性的根本保证。但是,数据量大到一定程度后也面临着很大问题:想要保证准确度就变的困难了。这样就难以保障分析结果的准确性了。大数据分析和预测失败的例子也有很多。比如,最典型和著名的一个便是谷歌预测流感趋势失败的案例。
报道称,谷歌是基于搜索引擎数据进行的分析,其分析结果与美国疾病防控中心的监测数据相差近两倍。尽管谷歌不断调整算法,但仍不能保证结果的准确性。这就说明一个重要问题:数据源问题。谷歌是基于搜索引擎上的搜索词来分析的,许多搜索词都是无效的,没有任何意义的,所以它们不能真的代表流感趋势,但它们同样被计算在内。这就造成了结果的严重偏差。
所以,你弄到的这些数据,如何保障它们的确是你所需的?的确是重要的?如果数据源出现了严重偏差,那么你的分析再精准,那么也是徒劳。比如,你花费了大量精力去搜集互联网用户产生的日常分享信息,你对他们的所有信息都进行分析,结果预测出几种消费趋势。但是,这些分享信息中有大量冗余信息,数据精准度很差,许多都是跟消费没有关系的,那么这种分析结果很可能就是不准确的。你按照这种结果进行下一步营销战略当然可能是失败的。
2、大佬平台的游戏,普通企业难掌握大量数据;难检验可信性
各大互联网公司平台掌握着用户资源,用户产生的信息当然也被聚集在各平台内。但是,各家公司或平台的数据并不会完全向公众开放。我们只能通过某些工具抓取到网络上散落的信息,但不能准确掌握完整的有实际价值和意义的后台数据和信息。
而这些海量信息,对于像谷歌这样的大互联网公司来说,就是宝藏。大数据或许只是这些大佬平台的游戏,普通企业比较难参与进来。
并且,这些平台之间并不互通和开放,他们分析出来的数据结果得不到第三方的验证和检验,我们就无法知道他们大数据分析结果的有效性和可信性。当然,他们将这些数据分析用户自身产品开发和自身发展上还是很有价值的。所以,普通人或普通企业对于大数据的渴望或许是奢望。将来互联网大平台公司或许会售卖大数据分析的服务,这很有可能。并且,未来,个人数据管理领域的创新和创业将会增加,应用也会增多。
以上是小编为大家分享的关于深扒大数据:关于用户隐私以及企业价值的相关内容,更多信息可以关注环球青藤分享更多干货
8. 辩论 大数据时代利弊 正方:利大于弊 反方:弊大于利 我是反方
你先要明白什么是大数据,去网络下
我可以向对方提哪些问题?
1 隐私会被泄露
2 大数据不能预测一切,如果太依靠数据预测,人类会丢失一些创造性思维
3 大数据本身就是机器学习,看看各种科幻片,人类太依靠机器人,会有什么样的后果
人的创造性思维,是任何机器无法模拟的
9. 大数据不是万能的.它有哪些局限性
局限一:不当负担
大数据到底是否利大于弊并不是我们现阶段所关心的问题,而能否识别其益处的非显性局限才是技术人员最应该关注的。
大数据支持者的核心主张是,但凡数据,必定有正面价值。然而这个想法是错误的,对公司管理层而言,看起来似乎无伤大雅的信息搜寻,却往往对数据收集的主体带来了不当负担。
比如,全球大学排名与联邦量刑指南是两大复杂社会系统演变而成的量化值,该方面的相关人员均表示,这样的全方位大数据归集整理无疑损害了他们原本系统的秩序。
而第一个提出“大数据时代”这一概念的麦肯锡公司(McKinsey)也曾坦言,“事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。”在随后的几年内,尽管信息量化的浪潮已开足马力,但相关证据依然少之又少。
局限二:易被操控
数据往往比人们想象的更易被操控。据Target前经理表示,公司管理部门曾尝试通过收集分析顾客问卷打分表以期提升顾客满意度,然而此举却造成员工伪造客户信息以夸大自己的工作表现。不受监管的可编制数据一旦被伪造,那么用它分析出的结果便不具任何意义。
而先前拥有自主执行权的负责数据编制的员工,此时却倍感压力重重,因为他们不得不接受不间断的中央监控。
局限三:不可量化
许多重要的问题是根本不适合也无法定量分析的,它们需要对价值、驱动力、所处环境及其他种种核心因素的评判。而找到一个绝对中立不偏不倚并受众人尊重信任的人,制定量化指标来对所有因素进行评定打分,是决计无法实现的。这便是一切社会机制中固有的难题。
局限四:衡量知识?
新基础科学知识对经济结构的影响过于分散和复杂,经济学家很难进行量化衡量。
当然,社会和经济制度的定量分析在最近几年存在系统性的缺陷,但这并不意味着未来的深入研究会遭遇同样的短板。然而,若是沿袭相同的基础方法论,那么即便收集再多的数据,这些缺陷也将持续存在。根据网上资料整理
10. 大数据的局限性是什么
计算机数据分析擅长于衡量社会交往的“数量”而不是“质量”。网络科学家可以在76%的时间里测量你与6个同事的社交互动,但他们不太可能捕捉到你对你一年只见两次的儿时朋友内心深处的感觉,更不用说但丁对比阿特丽斯的感觉了。所以,不要愚蠢到放弃你在社会决策中头脑中的神奇机器,而在工作中信任它。
1、大数据的局限性——大数据不理解背景
人类的决策不是离散的事件,而是根植于时间序列和环境中。经过数百万年的进化,人类的大脑已经适应了这个现实。人们擅长讲故事,有很多原因,也有很多场景。数据分析不知道如何讲故事,也不知道思维是如何浮现的。即使在一本普通的小说中,这种想法也无法用数据分析来解释。
2、大数据的局限性——大数据将创造更大的干草垛
这个想法是由著名商业思想家Nassim Taleb提出的,他是《黑天鹅:如何应对不可知的未来》一书的作者。我们拥有的数据越多,我们就能发现更显著的统计相关性。很多这样的关系都是毫无意义的,在解决问题时还会让人误入歧途。随着越来越多的数据可用,作弊行为呈指数级增长。在大海捞针的过程中,我们要找的针埋得越来越深。大数据时代的一个特征是,“重大”发现的数量被数据扩张的噪音淹没了。
3、大数据的局限性——大数据不能解决大问题
如果你只是想分析哪些邮件产生了最多的竞选捐款,你可以做一个随机对照试验。但如果目标是在衰退期间刺激经济,你不会找到一个平行世界社会作为对照组。最好的刺激方案是什么?关于这个问题有很多争论,尽管数据泛滥,但据我所知,这场辩论中没有一个主要的辩手根据统计分析改变了立场。
4、大数据的局限性——大数据往往是一种趋势,而不是杰作
当大量的个人迅速对一种文化产品产生兴趣时,数据分析可以对这种趋势敏感。但是一些重要的(有利可图的)产品一开始就从数据中被丢弃了,仅仅是因为它们的怪癖不为人所知。
5、大数据的局限性——大数据掩盖了价值
“原始数据”的意义在于,它永远不可能是“原始的”;它总是根据一个人的倾向和价值观来构建的。数据分析的结果看似客观公正,但实际上,价值选择贯穿于从构建到解读的全过程。
这篇文章并不是要批评大数据不是一个伟大的工具。但是,像任何工具一样,大数据也有它的长处和弱点。正如耶鲁大学(Yale University)的爱德华•塔夫特(Edward Tufte)所说:“世界比任何其他学科都更有趣。”
大数据的局限性有哪些?这才是大数据工程师必须了解的内容,计算机数据分析擅长于衡量社会互动的“数量”而不是“质量”。网络科学家可以在76%的时间里测量你与6个同事的社交互动,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站其他文章进行学习。