① 数据库运行中可能产生的故障有哪几类哪些故障影响事务的正常执行哪些破坏数据库数据
在我上的“数据库系统实现”课程中是分为一下四类:
错误数据输入
介质故障
灾难性故障
系统故障
但是有些书上给出的是:
一、事务内部的故障; 二、系统故障; 三、介质故障; 四、计算机病毒;五、用户操作错误
这个很难说谁的匪类对错,比如计算机病毒,这个可以算作系统故障,错误数据输入可以分为事务内部和用户操作
按照我自己课程的分类,错误数据输入和系统故障是影响事物正常执行的,而介质故障和灾难性故障是破坏数据库数据的
具体要看你们用什么教材,毕竟不是我判卷:)
② 什么是数据库事务什么是数据库脏数据并发控制技术有哪些数据库恢复
事务是一系列的数据库操作,是数据库应用程序的基本逻辑单元,也是恢复和并发控制的基本单位。事务处理技术主要包括数据库恢复技术和并发控制技术。本篇博文主要总结下并发控制技术。
事务:是用户定义的一个数据库操作序列,这些操作要么全做,要么全不做,是一个不可分割的工作单位。例如,在关系数据库中,一个事务可以是一条SQL语句、一组SQL语句或整个程序。一般来说,一个程序中包含多个事务。
ACID,是指在可靠数据库管理系统(DBMS)中,事务(transaction)所应该具有的四个特性:
A:原子性(Atomicity): 事务是一个或多个行为捆绑在一起组成一个单独的工作单元,事务中的动作要不都发生,要不都不发生。
C:一致性(Consistent): 即在事务开始之前和结束之后,数据库的完整性约束没有被破坏。
数据库层面:在一个事务执行前和执行后,数据会符合你设置的约束(例如unique约束,foreign key约束,check约束等)和触发器设置.由数据库进行保证.
③ 数据库面试常问问题有哪些
1、什么是数据库事务
数据库事务是构成单一逻辑工作单元的操作集合。数据库事务可以包括一个或多个数据库操作,但是这些操作构成一个逻辑上的整体。
2、数据库事务的四个特性(ACID)
A:原子性,事务中的所有操作作为一个整体不可分割,要么全部操作要么全部不操作。
C:一致性,事务的执行结果必须使数据库从一个一致性状态转为另一个一致性状态。一致性状态:1.系统状态满足数据库的完整性约束,2.系统的状态反映数据库所描述的现实世界的真实状态。
I:隔离性:并发执行的事务不会相互影响,其对数据库的影响和他们串行执行时一样。
D:持久性:事务一旦提交,对数据库的影响就是持久的。任何事务或系统故障都不会导致数据丢失。
3、什么是数据库连接泄露
数据库连接泄露指的是如果在某次使用或者某段程序中没有正确地关闭Connection、Statement和ResultSet资源,那么每次执行都会留下一些没有关闭的连接,这些连接失去了引用而不能得到重新使用,因此就造成了数据库连接的泄漏。数据库连接的资源是宝贵而且是有限的,如果在某段使用频率很高的代码中出现这种泄漏,那么数据库连接资源将被耗尽,影响系统的正常运转。
4、聚集索引
数据行的物理顺序与列值的顺序相同,如果我们查询id比较靠后的数据,那么这行数据的地址在磁盘中的物理地址也会比较靠后。而且由于物理排列方式与聚集索引的顺序相同,所以也就只能建立一个聚集索引了。
5、主键与外键
关系型数据库中的一条记录中有若干个属性,若其中某一个属性组(注意是组)能唯一标识一条记录,该属性组就可以成为一个主键。
外键用于与另一张表的关联。是能确定另一张表记录的字段,用于保持数据的一致性。比如,A表中的一个字段,是B表的主键,那他就可以是A表的外键。
④ 数据库老师会问哪些问题
1.MySQL 主键与索引的联系与区别
主键是为了标识数据库记录唯一性,不允许记录重复,且键值不能为空,主键也是一个特殊索引。
数据表中只允许有一个主键,但是可以有多个索引。
使用主键会数据库会自动创建主索引,也可以在非主键上创建索引,方便查询效率。
索引可以提高查询速度,它就相当于字典的目录,可以通过它很快查询到想要的结果,而不需要进行全表扫描。
主键索引外索引的值可以为空。
主键也可以由多个字段组成,组成复合主键,同时主键肯定也是唯一索引。
唯一索引则表示该索引值唯一,可以由一个或几个字段组成,一个表可以有多个唯一索引。
2.数据库索引是怎么回事?用的啥数据结构 为什么B+树比B树更合适
一个索引是存储的表中一个特定列的值数据结构(最常见的是B-Tree)。索引是在表的列上创建。所以,要记住的关键点是索引包含一个表中列的值,并且这些值存储在一个数据结构中。请记住记住这一点:索引是一种数据结构 。
什么样的数据结构可以作为索引?
B-Tree 是最常用的用于索引的数据结构。因为它们是时间复杂度低, 查找、删除、插入操作都可以可以在对数时间内完成。另外一个重要原因存储在B-Tree中的数据是有序的。数据库管理系统(RDBMS)通常决定索引应该用哪些数据结构。但是,在某些情况下,你在创建索引时可以指定索引要使用的数据结构。
当我们利用索引查询的时候,不可能把整个索引全部加载到内存,只能逐一加载每个磁盘页,磁盘页对应索引树的节点。那么Mysql衡量查询效率的标准就是磁盘IO次数。如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。
那么为了提高查询效率,就需要减少磁盘IO数。为了减少磁盘IO的次数,就需要尽量降低树的高度,需要把原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好,因此B树正好符合我们的要求,这也是B-树的特征之一。
B树 B树的节点为关键字和相应的数据(索引等)
B+树 B+树是B树的一个变形,非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中,B+树的叶子节点为链表,链表放数据,非叶子节点是索引。
对比:
B树和B+树同样适用于高度越低,查询越快。
B树查找节点,B+树只需要查询所有节点(索引),B树查询索引和数据。虽然可能第一个就找到,但在极端情况下,需要全查询索引和数据,不如B+树稳定。
B+树和B树比,B+树的硬盘空间更少,io的读写代价更低。因为B+树节点只有索引,占位更少。在查询的情况下硬盘指针移动更低
哈希表索引是怎么工作的?
哈希表是另外一种你可能看到用作索引的数据结构-这些索引通常被称为哈希索引。使用哈希索引的原因是,在寻找值时哈希表效率极高。所以,如果使用哈希索引,对于比较字符串是否相等的查询能够极快的检索出的值。例如之前我们讨论过的这个查询(SELECT * FROM Employee WHERE Employee_Name = ‘Jesus’) 就可以受益于创建在Employee_Name 列上的哈希索引。哈系索引的工作方式是将列的值作为索引的键值(key),和键值相对应实际的值(value)是指向该表中相应行的指针。因为哈希表基本上可以看作是关联数组,一个典型的数据项就像“Jesus => 0x28939″,而0x28939是对内存中表中包含Jesus这一行的引用。在哈系索引的中查询一个像“Jesus”这样的值,并得到对应行的在内存中的引用,明显要比扫描全表获得值为“Jesus”的行的方式快很多。
哈希索引的缺点
哈希表是无顺的数据结构,对于很多类型的查询语句哈希索引都无能为力。举例来说,假如你想要找出所有小于40岁的员工。你怎么使用使用哈希索引进行查询?这不可行,因为哈希表只适合查询键值对-也就是说查询相等的查询(例:like “WHERE name = ‘Jesus’)。哈希表的键值映射也暗示其键的存储是无序的。这就是为什么哈希索引通常不是数据库索引的默认数据结构-因为在作为索引的数据结构时,其不像B-Tree那么灵活
3.创建索引的注意事项
索引可以提高数据的访问速度,但同时也增加了插入、更新和删除操作的处理时间,解决此问题就是分析应用程序的业务处理、数据使用,为经常被用作查询条件、或者被要求排序的字段建立索引。索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。
创建规则:
表的主键、外键必须有索引;
数据量超过300的表应该有索引;
经常与其他表进行连接的表,在连接字段上应该建立索引;
经常出现在Where子句中的字段,特别是大表的字段,应该建立索引;
索引应该建在选择性高的字段上;
索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引;
复合索引的建立需要进行仔细分析;尽量考虑用单字段索引代替
频繁进行数据操作的表,不要建立太多的索引;
删除无用的索引,避免对执行计划造成负面影响;
创建索引需要注意的地方:
限制表上的索引数目。对一个存在大量更新操作的表,所建索引的数目一般不要超过3个,最多不要超过5个。索引虽说提高了访问速度,但太多索引会影响数据的更新操作。
避免在取值朝一个方向增长的字段(例如:日期类型的字段)上,建立索引;对复合索引,避免将这种类型的字段放置在最前面
对复合索引,按照字段在查询条件中出现的频度建立索引
删除不再使用,或者很少被使用的索引。
4.MYSQL事务特性和实现原理
ACID表示原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(rability)。一个很好的事务处理系统,必须具备这些标准特性:
原子性(atomicity)
一个事务必须被视为一个不可分割的最小工作单元,整个事务中的所有操作要么全部提交成功,要么全部失败回滚,对于一个事务来说,不可能只执行其中的一部分操作,这就是事务的原子性
是利用Innodb的undo log。undo log名为回滚日志,是实现原子性的关键,当事务回滚时能够撤销所有已经成功执行的sql语句,他需要记录你要回滚的相应日志信息。
一致性(consistency)
数据库总是从一个一致性的状态转换到另一个一致性的状态。(在前面的例子中,一致性确保了,即使在执行第三、四条语句之间时系统崩溃,支票账户中也不会损失200美元,因为事务最终没有提交,所以事务中所做的修改也不会保存到数据库中。)
数据库通过原子性、隔离性、持久性来保证一致性
隔离性(isolation)
通常来说,一个事务所做的修改在最终提交以前,对其他事务是不可见的。(在前面的例子中,当执行完第三条语句、第四条语句还未开始时,此时有另外的一个账户汇总程序开始运行,则其看到支票帐户的余额并没有被减去200美元。)
利用的是锁和MVCC机制。MVCC,即多版本并发控制(Multi Version Concurrency Control),一个行记录数据有多个版本对快照数据,这些快照数据在undo log中。如果一个事务读取的行正在做DELELE或者UPDATE操作,读取操作不会等行上的锁释放,而是读取该行的快照版本。
持久性(rability)
一旦事务提交,则其所做的修改会永久保存到数据库。(此时即使系统崩溃,修改的数据也不会丢失。持久性是个有占模糊的概念,因为实际上持久性也分很多不同的级别。有些持久性策略能够提供非常强的安全保障,而有些则未必,而且不可能有能做到100%的持久性保证的策略。)
是利用Innodb的redo log。当做数据修改的时候,不仅在内存中操作,还会在redo log中记录这次操作。当事务提交的时候,会将redo log日志进行刷盘(redo log一部分在内存中,一部分在磁盘上)。当数据库宕机重启的时候,会将redo log中的内容恢复到数据库中,再根据undo log和binlog内容决定回滚数据还是提交数据。redo log体积小,刷盘快。redo log是一直往末尾进行追加,属于顺序IO。效率显然比随机IO来的快
5.redis的原理和优点
redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hashs(哈希类型)
这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的.
在此基础上,redis支持各种不同方式的排序.与memcached一样,为了保证效率,数据都是缓存在内存中.区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步.
Redis的优点:
性能极高 – Redis能支持超过 100K+ 每秒的读写频率。
丰富的数据类型 – Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
原子 – Redis的所有操作都是原子性的,同时Redis还支持对几个操作全并后的原子性执行。
丰富的特性 – Redis还支持 publish/subscribe, 通知, key 过期等等特性。
6.Mysql中的锁机制
Mysql用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。这些锁统称为悲观锁
MySQL的锁机制比较简单,其最 显著的特点是不同的存储引擎支持不同的锁机制。比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。
表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度 来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有 并发查询的应用,如一些在线事务处理(OLTP)系统。
7.ABC联合索引生效问题
对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分。例如索引是key index (a,b,c)。 可以支持a | a,b| a,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效。
对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分。例如索引是key index (a,b,c)。 可以支持a | a,b| a,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效。
⑤ 数据库详解之事务
究竟什么是数据库的事务,为什么数据库需要支持事务,为了实现数据库事务各种数据库的是如何设计的。还是只谈理解,欢迎大家来讨论。
1. 数据库事务是什么
事务的定义,已经有太多文章写过,我就不重复了。我理解的事务就是用来保证数据操作符合业务逻辑要求而实现的一系列功能。换句话说,如果数据库不支持事务,上面业务系统的程序员就需要自己写代码保证相关数据处理逻辑的正确性。而数据库事务就是把一系列保证数据库处理逻辑正确性的通用功能在数据库内实现,并且尽量提高效率。
举个例子,数据库最开始普及就是在金融业,银行的存取款场景就是一个最典型的OLTP数据库场景,而事务就是设计用来保证类似场景的业务逻辑正确性的。
![事务的四个基本特性](https://img-blog.csdnimg.cn/.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAd2luZHRhbGtlcnd5,size_20,color_FFFFFF,t_70,g_se,x_16)
**原子性**,如果你要给家人转账,必须在你的账户里扣掉100块,在家人账户里加上100块,这两笔操作需要一起完成,业务逻辑才是正确的。但是程序在做修改的时,肯定会有先后顺序,试想一下程序扣了你的钱,这个时候程序崩溃了,家人账户的钱没有加上。那这100块是不是消失了?你是不是要发疯?那么,就把这两笔操作放进一个事务里,通过原子性保证,这两笔操作要么都成功,要么都失败。这样才能保证业务逻辑的正确性。
**一致性**,有很多文章讲过一致性,但是很多人会把一致性跟原子性混在一起说。事务的一致性指的是指每一个事务必须保证执行之后所有库内的规则依旧成立。比如内外键,constraint,触发器等。举例来说,你在储蓄卡里有100元,理财账户里有100元,基金账户有100元,那么你在资产总和里会看到300元,这个300元必须是其他三个账户余额加在一起得到的。你在给家人转帐100元是从储蓄卡里转出去了100元,那么在数据库上可以通过创建触发器的方式,当储蓄卡余额账户减100元的同时,把资产总和也同步减去100,不然的话,就会出现逻辑上的错误,因为你已经转走了100块储蓄卡余额,实际资产总和应该是200,如果还是300,数据库状态就不一致了。所以实现事务的时候,必须要保证相关联的触发器以及其他所有的内部规则都执行成功,事务才能算执行成功。如果在减去资产总时出错,那么这笔转帐交易也不能成功。因为这样数据库就会进入不一致的状态。
那么这里跟原子性的区别到底在哪里呢?原子性是指个多个用户指令之间必须作为一个整体完成或失败,而一致性更多是数据库内的相关数据规则必须同时完成或失败。
**持久性**,最容易理解的一个,事务只要提交了,那么对数据库的修改就会保存下来不会丢了。简单来说,只要提交了,数据库就算崩溃了,重启之后你刚存的100块依然在你的账户里。
**隔离性**,每个事务相对于其他的事务是有一定独立性的,不能互相影响。因为数据库需要支持并发的操作来提高效率。在并发操作时,一定要通过操作之间的隔离来保证业务逻辑的正确性。比如,你转帐100块给家人,一系列操作的最后一步可能是输入验证码,这个时候转帐还没有完成,但是在数据库里你的账户对应的记录中已经减去100块,家人账户也加了100块,就等着验证码输入以后,事务提交,完成操作。那么,这个时候,家人通过手机银行能够查到这100块么?你的答案可能是不能,因为这样才符合业务逻辑,因为你的转帐操作还没有提交,事务还没有完成。那么数据库就应该保证这两个并发操作之间具有一定的隔离性。
那么到底应该隔离到什么程度呢?隔离性又分为4个等级:由低到高依次为Read uncommitted(读未提交)、Read committed(读提交)、Repeatable read(可重复读取)、Serializable(序列化),这四个级别可以逐个解决脏读、不可重复读、幻象读这几类问题。这些东西是什么意思?请有兴趣的小伙伴自行网络,很多文章都写的很清楚。
那么怎么理解不同的隔离等级呢,首先要理解并发操作,并发操作就是指有不同的用户同时对一个数据进行读、写操作,那么在这个过程中,每个用户应该看到什么数据才能保证业务逻辑的正确性呢? 如果是前面存取款的场景,我必须看到的是已经存进来的钱,也就是必须是已经提交的事务。而12306刷火车票呢,你可以看到有10张余票,但是在下单的时候告诉你票卖完了,因为同时有10个用户把票买掉了,你需要重新刷余票,这个也是可以接受的,也就是说我可以读到一些虚假的余票,这样在业务上也没有什么问题。那么在设计这两个不同系统时,就可以选择不同的事务隔离级别来实现不同的并发效果。不同的隔离等级就是要在系统的并发性和数据逻辑的严谨性之间做出的平衡。
2. 数据库如何实现事务
数据库实现事务会有多种不同的方式,但基本的原理类似,比如都需要对事务进行统一的编号处理,都需要记录事务的状态(是成功了还是失败了),都需要在数据存储的层面对事务进行支持,以明确哪些数据是被哪些事务、插入、修改和删除的。同时还会记录事务日志等,对事务进行系统化的管理以实现数据的原子性,一致性和持久性。
要实现事务的隔离性,最基础的就是通过加锁机制把并发操作适当的串行化来保证数据操作的正确逻辑。但是为了要保证系统具有良好的并发性能,必须要在实现事务隔离性时需要找到合理的平衡点。大部分数据库(包括Oracle,MySQL,Postgres在内)在做并发控制的时候都会采用MVCC(多版本并发控制)的机制来保证系统具有较高的并发性,不同数据库实现MVCC的具体方案也不尽相同,但其基本原理类似。
3. MVCC实现原理
所谓MVCC,就是数据库中的同一查询根据相关事务执行的先后顺序以及隔离级别的不同,可能会存在不同版本的结果,通过这样的手段来保证大部分查询操作不会被修改操作阻塞并保证数据逻辑的正确性。也就是数据库通过保存多个版本的数据( 历史 数据)来提高系统的并发查询能力。简单来说就是用存储空间来交换并发能力。下面以Postgres为例介绍一下MVCC的一种实现方式帮助大家理解这个重要的数据库概念。通过下面的图来解释Posrgres里最基本的数据可见性是如何实现多版本控制的。
![在这里插入图片描述](https://img-blog.csdnimg.cn/.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAd2luZHRhbGtlcnd5,size_20,color_FFFFFF,t_70,g_se,x_16)
首先,Postgres里的每一个事务都有编号,这里可以简单理解为时间顺序编号,编号越大的事务发生越晚。然后,数据库里的每一行记录都会保存创建这条记录的事务号(Cre),也会在记录删除时保存删除这条记录的事务号(Exp),换句话说,只要Exp这里一列里记录了事务编号,就说明这条记录被删除了。那么一个事务应该能看见那些记录呢?Postgres里每一个事务都会保存一个当前系统的事务快照(Snapshot),这个快照里会保存事务创建时当前系统的最高(最晚)事务编号,以及目前还在进行中的事务编号。那么如上图所示的一个事务的快照里最高事务编号为100,目前正在进行的事务有25,50和75。那么对应左边数据记录,这6行数据的可见性就如同标注的一般:
第一行,Cre 30,没有删除,在100这个时间点,应该能看到。
第二行,Cre 50,没有删除,但是50这个事务还没有提交,正在进行中,所以看不见。
第三行,Cre 110,没有删除,但是100这个时间点110事务还没有发生,所以看不见。
第四行,Cre 30,Exp 80,在80的时候数据被删掉了,所以看不见。
第五行,Cre 30,Exp 75,在30的时候被创建,75时候被删掉了,但是75这个事务在100的时候还没有提交,所以这条记录在100的时候还没有删掉,所以看得见。
第六行,Cre30,Exp 110,在30的时被创建,110时候被删掉,但是在100时候,110还没有发生,所以看得见。
综上,就是这个事务对这六条记录的可见性,也就是一个数据版本。那么大家可以看一下如果另一个事务的快照里存的是最高事务编号为110,正在进行的事务为50,那么它能看到的数据应该是哪几行呢?同时大家也看到,Postgres里删除一行数据其实就是在这一行的Exp这个列记录一个删除事务的编号,相当于做了一个删除标记,而数据没有真正被删除,因此Postgres数据库需要定期做数据清理操作(Vacuum)。Pstgres的在现实场景里会比这里介绍的要复杂,因为我们这里假定所有的事务最终都是正确提交了,如果存在某些事务没有提交的情况,那么可见性就会更加复杂,这里不再展开了。
数据库事务是基本的数据库概念,之前已经有很多很好文章做过介绍,这里希望能把自己的理解用比较通俗的描述分享给大家,欢迎来讨论交流。
⑥ 请具体解释在数据库中什么是事务的内部故障
数据库系统故障可分为:事务内部故障、系统范围内故障、介质故障和计算机病毒四类。
1.事务内部故障
事务内部故障是指事务运行没有达到预期的终点,未能成功地提交事务,使数据库处于不正确状态。事务内部故障有的可以通过事务程序本身发现,是可预期的故障,但更多的是不可预期的故障,如数据溢出等。当发生事务内部故障时,可强行回滚(ROLLBACK)该事务,这类恢复操作称为撤消(UNDO)。
2.系统范围的故障
造成系统停止运行的任何事件都称为系统故障,如停电、操作系统故障。这类故障造成正在运行的事务非正常终止,数据库缓冲区中数据的丢失。若发生系统范围的故障,恢复子系统必须在系统重新启动时让所有非正常终止的事务回滚,若事务只作一半便发生故障,必须先撤消该事务,然后重做。
3.存储介质故障
系统故障又称软故障,存储介质故障称为硬故障。硬故障发生的可能性小,但破坏性极大。如硬盘损坏等。
4.计算机病毒
计算机病毒主要破坏计算机软件系统,由计算机病毒引起的故障属于系统范围的故障。
⑦ 事务运行中可能产生的故障有哪几类哪些故障破坏数据库数据
看来我真是外行,这种题我居然回答不了,下面的是复制的:
数据库系统中的故障可以分以下几类:(1)事务内部的故障;(2)系统故障;(3)介质故障;(4)计算机病毒。事务故障、系统故障和介质故障影响事务的正常执行;介质故障和计算机病毒破坏数据库数据
⑧ 什么是数据库事务
数据库事务,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源。通过将一组相关操作组合为一个要么全部成功要么全部失败的单元,可以简化错误恢复并使应用程序更加可靠。
一个逻辑工作单元要成为事务,必须满足所谓的ACID(原子性、一致性、隔离性和持久性)属性。事务是数据库运行中的逻辑工作单位,由DBMS中的事务管理子系统负责事务的处理。
企业级的数据库管理系统(DBMS)都有责任提供一种保证事务的物理完整性的机制。就常用的SQL Server2000系统而言,它具备锁定设备隔离事务、记录设备保证事务持久性等机制。因此,我们不必关心数据库事务的物理完整性,而应该关注在什么情况下使用数据库事务、事务对性能的影响,如何使用事务等等。
事务有三种模型:
1、隐式事务是指每一条数据操作语句都自动地成为一个事务,事务的开始是隐式的,事务的结束有明确的标记。
2、显式事务是指有显式的开始和结束标记的事务,每个事务都有显式的开始和结束标记。
3、自动事务是系统自动默认的,开始和结束不用标记。