导航:首页 > 数据分析 > 大数据发展方向哪个更加赚钱

大数据发展方向哪个更加赚钱

发布时间:2023-01-16 10:12:49

❶ 2022大数据专业就业岗位有哪些 什么岗位挣钱多

大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。

大数据方向挣钱多的岗位

( 1)大数据系统研发工程师 :负责大数据系统研发工作,包括大规模非结构化数据业务模型构建、大数据存储、数据库架构设计以及数据库详细设计、优化数据库构架、解决数据库中心建设设计问题。他们还负责集群的日常运作、系统的监测和配置、Hadoop与其他系统的集成。

(2)大数据应用开发工程师 :负责搭建大数据应用平台、开发分析应用程序。他们熟悉工具或算法、编程、包装、优化或者部署不同的MapRece事务。他们以大数据技术为核心,研发各种基于大数据技术的应用程序及行业解决方案。

( 3)大数据分析师: 运用算法来解决分析问题,并且从事数据挖掘工作。他们最大的本事就是能够让数据道出真相;此外,他们还拥有某个领域的专长,帮助开发数据产品,推动数据解决方案的不断更新。

(4)数据可视化工程师 :具备良好的沟通能力与团队精神,责任心强,拥有优秀的解决问题的能力。他们负责在收集到的高质量数据中,利用图形化的工具及手段的应用,一目了然地揭示数据中的复杂信息,帮助企业更好的进行大数据应用开发,发现大数据背后的巨大财富。

大数据热门专业

1、Hadoop开发

随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。

2、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以十分有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

3、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

4、ETL研发

企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

❷ 做大数据有点迷茫,具体应该往那个方向发展

这是一个非常好的问题,也是很多大数据初学者,或者是大数据从业者面临的问题之一,作为一名 科技 工作者,我来回答一下。

首先,从大数据自身的发展前景来看,未来大数据的价值空间会越来越大,在工业互联网的推动下,大数据会广泛落地到传统行业领域,所以当前不论是创业者还是职场人,进入大数据领域发展会有大量的机会,这一点是没有问题的。另外,大数据也是新基建计划的重要内容之一,这必然会进一步促使更多的行业资源和 社会 资源向大数据领域汇集。

从当前大数据领域的岗位方向划分来看,大数据分析、大数据开发和大数据运维是比较常见的三大方向,这三大方向的发展前景都比较广阔,当前大数据开发岗位的人才需求量相对比较大,而且岗位附加值也比较高。从近些年大数据方向研究生的就业情况来看,毕业生逐渐开始从算法岗位向开发岗位转换,一方面原因是算法岗位相对比较少,另一方面开发岗位的薪资待遇与算法岗位也基本上持平了。

从大数据自身的发展趋势来看,随着大数据技术体系的逐渐成熟,目前大数据正在从技术研发向行业应用发展,更多的研发力量会集中在如何让大数据为传统行业赋能上,所以当前从事大数据领域,可以重点关注一下如何在行业应用领域进行创新。

在行业应用领域进行创新的技术门槛相对较低,在技术实现上可以基于大数据平台来开发各种模式,但是行业创新对于从业者的行业知识要求比较高,从业者要有较强的行业认知能力,这往往需要技术人员与行业专家进行合作,这是非常重要的。

最后,在大数据领域发展一定要重视技术发展趋势和 社会 发展趋势,既要潜心钻研,同时也要重视与技术专家和行业专家的交流。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

大数据主要有以下几个重要方向:人工智能、区块链、物联网、智慧城市、人脸识别、语音识别、AR等。使用领域几乎涉及各行各业:金融、保险、医疗、教育、出行、交通等各行各业。所以说大数据的前景非常的广阔,如果想选择一个方向作为主要发展方向的话,可以朝着人工智能方向发展,目前人工智能领域不仅人才稀缺,而且属于国家高度发展领域,几乎所有较大的互联网企业和非互联网企业都在朝着人工智能领域涉足,而且工资也相较于其他方向要高好多。所以可以根据个人自身优势,结合市场大环境进行考量。

大数据现在的发展还是比较好的,发展路线来说的话,大方向是分为两条路,一个是偏技术向,另一个是偏业务向。

两者的区别在于,技术方向侧重于怎样处理好数据,业务方向侧重于怎样用好数据。

技术类方向可以理解为是大数据界的码农、程序员,根据具体负责的工作不同,有不同的岗位设置。

1、大数据平台研发

职责:主要负责大数据技术的产品化,包括开源技术框架的研究、封装和开发

2、大数据开发

职责:也叫ETL工程师,主要负责使用大数据技术采集、处理、分析数据;

3、大数据算法

职责:俗称调参工程师,主要负责使用机器学习算法建模,处理业务需求,基于算法引擎封装算法工具。

4、大数据可视化

职责:主要负责数据可视化应用开发

业务向的话,主要就是 大数据分析

职责:主要负责结合业务问题,使用大数据分析、制作数据分析报告、规划数据应用等。

具体往哪个方向发展,可以根据你自己的能力偏好,兴趣来决定。

大数据其实算是很前沿的一个行业方向了吧。不过现在 科技 发展迅猛,数据也许已经慢慢降低在市场中的权重了,未来可能是人工智能, 科技 研发,生物制药比较有前景了。而这些 科技 行业其实可以说不太需要什么用户数据。就好比研制火箭,研制特效药,研发阿尔法狗,这些其实都不需要用户什么数据的,高 科技 进入门槛就比较高了,比较专业了,如果大数据OK的话就继续做吧,毕竟也算白领行业一帮人进入不了。

希望能进入优质回答[捂脸][捂脸]

伴随着大数据的发展,如今很多的人们都都投入了大数据开发的洪流中,不过相对也有着不少的朋友还对大数据的发展还比较迷茫,大数据发展趋势是什么?接下来就来为大家解析一下吧。

开源解决方案

有许多可用的公共数据解决方案(例如开源软件),已经在加速数据处理方面取得了相当大的进步。它们现在也具有允许实时访问和响应数据的功能,因此它们将在未来蓬勃发展,并受到高度需求。边缘计算在物联网迅速发展的趋势影响下,许多公司开始转向连接设备,以收集更多关于客户或流程的数据。这就产生了对技术创新的需求,旨在减少从数据的收集、分析到采取行动的滞后时间。边缘计算提供了更好的性能,因为流入和流出网络的数据更少,云计算成本更低,即使公司要删除从物联网收集到的不必要的数据,公司也可以从存储成本和基础设施成本中受益。此外,边缘计算还可以加快数据分析,让公司有充足的时间做出反应。

更智能的聊天机器人

在人工智能技术的推动下,聊天机器人现在被用来处理客户查询以提供更个性化的交互,同时不再需要实际的人工人员。机器人在处理大量数据时,能够根据客户在查询中输入的关键字来提供相关答案。而在互动过程中,他们还能够从对话中收集和分析客户的信息,这个过程可以帮助企业开发更精简的策略,提供更愉快的客户体验。

更智能、更严格的网络安全

由于过去那些被曝出的涉及黑客攻击和系统入侵的丑闻,各机构开始将重点放在加强信息保密上。物联网也引起了人们对所收集数据的关注,其中网络安全是个大问题。为了应对这一迫在眉睫的威胁,大数据公司开始利用数据分析工具来预测和检测网络安全威胁。大数据可以通过将安全日志数据集成到网络安全策略中,提供有关过去威胁的信息,帮助公司防止和减轻未来黑客攻击以及数据泄露的影响。

落地吧,现在好多项目落地难

可以往 旅游 这方面,我们邢台的山上好多好玩的呢

现状大数据的前景十分的好,随着大数据应用于各行各业,并正在改变着各行各业,同时也引领大数据人才的变革,在国家及当地政府支持下,大数据在快速发展,企业日后发展将基于大数据计算分析、数据挖掘、数据分析等数据产业的发展,我国也将更加需要更多的数据人才。

这是一个通用的问题,往哪个方面发展困扰着很多人。

首先分析下自己对技术感兴趣吗,数学功底好吗,如果感兴趣又数学功底好,就超算法方面发展,薪资待遇高。

如果数学功底不好,对技术感兴趣,在看自己逻辑如何,逻辑好,就做大数据开发。这个待遇也节节看涨。

如果对技术部感兴趣,还能学进去,那么做数据分析,应用专业软件,需要有些产品知识和行业知识。

如果技术是个渣,对行业和产品感兴趣,那么就做产品经理。

如果什么都提不起兴趣,只是为了感时髦潮流,那么就学个python,随波逐流,碰碰机遇吧。

现状大数据的前景十分的好,随着大数据应用于各行各业,并正在改变着各行各业,同时也引领大数据人才的变革,在国家及当地政府支持下,大数据在快速发展,企业日后发展将基于大数据计算分析、数据挖掘、数据分析等数据产业的发展,我国也将更加需要更多的数据人才。

❸ 大数据未来四大发展方向

近几年,互联网行业发展风起云涌,“大数据”炙手可热,对处于初始阶段的大数据而言,很多企业都不会错失机会。那么,大数据未来的发展前景和应用策略如何?本文将结合融信教育多年来经验为大家解析:

趋势一数据的资源化

何谓资源化,是指大数据成为企业和 社会 关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

趋势四:数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

另外,大数据作为一种重要的战略资产,已经不同程度地渗透到每个行业领域和部门,其深度应用不仅有助于企业经营活动,还有利于推动国民经济发展。它对于推动信息产业创新、大数据存储管理挑战、改变经济 社会 管理面貌等方面也意义重大。

现在,通过数据的力量,用户希望掌握真正的便捷信息,从而让生活更有趣。对于企业来说,如何从海量数据中挖掘出可以有效利用的部分,并且用于品牌营销,才是企业制胜的法宝。

目前来看大数据时代已经产出是新的工作岗位:大数据开发工程师,大数据分析师,新媒体运营师,人工智能开发工程师等,新兴行业岗位。

❹ 大数据的工作前景怎么样

不错
大数据专业就业前景不错,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据...
1。
大数据专业就业方向。
大数据开发方向:涉及的岗位诸如大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
数据挖掘、数据分析和机器学习方向:涉及的岗位诸如大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
大数据运维和云计算方向:涉及的岗位诸如大数据运维工程师等;

❺ 大数据最具有前景的发展是什么

1、市场需求大
随着信息产业的迅猛发展,行业人才需求量也在逐年扩大。据国内权威数据统计,未来五年,我国信息化人才总需求量高达1500万— 2000万人。以大数据分析为例,我国大数据人才需求以每年递增20%的速度增长,每年新增需求近百万。
2、就业范围广
一般稍微有规模的企业,都有自己的IT部门,如果企业里的信息量比较大,就势必需要数据库的管理、企业信息化管理等,学员除了去新兴行业外,还可以去这些比较有规模的企业,担任信息部的重要岗位。
3、高薪职位
市场经济高速发展的今天,大数据行业以其超强的发展势头,成为目前最具前景的高薪行业之一,大数据分析、大数据开发等大数据人才必将成为市场紧缺型人才,发展前景好,薪资水平也水涨船高。

❻ 大数据就业方向及前景

大数据的就业前景目前来看是不错的。

大数据目前有以下几个就业方向:

1、大数据开发方向。所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等。

从近几年招聘情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。

❼ 大数据什么工作最挣钱

Hadoop研发/运维工程师

大数据研发/运维工程师
大数据分析/运维工程师
数据库/spark工程师
薪资在6千到2万多不等,有包就业的培训班

❽ 大数据就业方向及前景

这个时代是大数据时代,也是大数据人才稀缺的时代。
由于中国人才缺口比较大,大数据的优势已经日渐凸显,作为一种可分析、可预测、可以实时监控的新科技正在被各个行业所青睐。无论是对人才的招聘还是再培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最高的,掌握大数据技术,工资提升40%左右是很常见的。
大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,以及优化库存,降低成本,预测需求。
大数据时代热门职业
1、数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
2、数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
3、数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
4、数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
5、数据应用师
将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,根据数据分析结论推动企业内部做出调整。
6、数据科学家
大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。

❾ 大数据就业方向

大数据主要的三大就业方向:

  1. 大数据系统研发类人才;

  2. 大数据应用开发类人才;

  3. 大数据分析类人才。

大数据十大就业职位:

一、ETL研发

随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。

ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

二、Hadoop开发

Hadoop的核心是HDFS和MapRece.HDFS提供了海量数据的存储,MapRece提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。

三、可视化(前端展现)工具开发

海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。

可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。

过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

四、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

五、数据仓库研究

数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。

数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。

六、OLAP开发

随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。

OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

七、数据科学研究

这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。

总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。

八、数据预测(数据挖掘)分析

营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

九、企业数据管理

企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。

十、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。

阅读全文

与大数据发展方向哪个更加赚钱相关的资料

热点内容
如何进行项目的计划编程 浏览:779
如何知道微信版本号 浏览:298
821bb改什么网站了 浏览:987
aspsql数据库怎么连接 浏览:290
qq上如何查看运动轨迹 浏览:836
魅族代码功能大全 浏览:618
qq群里下载的文件记录怎么删除怎么恢复吗 浏览:835
ug80草图视频教程 浏览:706
苹果手机录屏文件电脑无法播放 浏览:259
win10分区后如何重新分区 浏览:152
如何下载网页源文件 浏览:679
好友视频怎么传文件 浏览:452
编程的软件是用什么制作的 浏览:794
win10耳机和音响不同时响 浏览:955
爱奇艺更新后为什么不显示文件 浏览:371
iphone6指纹加密 浏览:164
易趣编程怎么联系 浏览:285
苏州拉拉群80后微信 浏览:924
sgt文件下载 浏览:378
115网盘能上传多大的文件 浏览:643

友情链接