导航:首页 > 数据分析 > 什么是数据发掘

什么是数据发掘

发布时间:2023-01-12 07:56:23

❶ 数据挖掘的概念和原理是什么

数据挖掘概述

数据挖掘又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库回领域研究的热点问答题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

数据挖掘的定义

1.技术上的定义及含义

数据挖掘的基本过程和主要步骤

❷ 什么是非参数的数据发掘方法

随机抽取。非参数的数据挖掘是指从大量的数据中,随机抽取出潜在的、有价值的知识模型或规则的过程。

❸ 什么是数据挖掘

数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:

(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。

(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。

(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。

❹ 什么是数据挖掘 其功能是什么

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘的流程是:

定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。

❺ 什么是数据挖掘

你好!
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘是人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。

❻ 数据分析和数据挖掘的区别是什么如何做好数据挖掘哪家做的比较好

数据分析更多采用统计学的知识,对原数据进行描述性和探索性分析,从结果中发现价值信息来评估和修正现状。数据挖掘不仅仅用到统计学的知识,还要用到机器学习的知识,这里会涉及到模型的概念。数据挖掘具有更深的层次,来发现未知的规律和价值。
做好数据挖掘需要以下几个步骤:第一、是商业理解;第二、数据理解;第三、数据准备;
第四、建模;第五、评价。关于数据挖掘的业务很多公司都有,不过并没有专业的数据挖掘公司。

更多数据挖掘的信息,推荐咨询CDA数据分析师的课程。“CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

❼ 什么是数据挖掘

数据挖掘又译为资料探勘、数据采矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

是一个用数据发现问题、解决问题的学科。

通常通过对数据的探索、处理、分析或建模实现。

❽ 什么是数据挖掘

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。



数据挖掘对象

数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。

发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

阅读全文

与什么是数据发掘相关的资料

热点内容
win10双屏拖文件 浏览:291
win10系统打开文件夹不对 浏览:444
线上有哪些批发商城app 浏览:632
mkv文件是什么 浏览:817
文件夹xml怎么改成word 浏览:293
excel表格如何建立数据库 浏览:378
国外程序员兼职平台 浏览:575
如何在电脑上查看宽带密码是什么 浏览:689
下级收到领导文件回复签字写什么 浏览:405
厦门学少儿编程哪里有 浏览:119
重要文件公司保留多少年 浏览:53
win10蓝屏找不到系统文件怎么处理 浏览:287
怎么把手机word文件发送到微信里 浏览:57
网络学习的学分什么时候到 浏览:376
qq飞车k2轮滑特性 浏览:321
cat写入文件写错了 浏览:308
java增量编译 浏览:10
网站排名突然掉了什么时候能恢复 浏览:169
星光笔刷教程 浏览:41
电脑是怎么储存文件 浏览:615

友情链接